baguioni's picture
Create app.py
ffd5eab
raw
history blame
935 Bytes
import gradio as gr
model = gr.Interface.load("huggingface/pyannote/voice-activity-detection")
#load input file and resample to 16kHz
def load_data(path):
speech, sampling_rate = librosa.load(path)
if len(speech.shape) > 1:
speech = speech[:,0] + speech[:,1]
if sampling_rate != 16000:
speech = librosa.resample(speech, sampling_rate,16000)
return speech
def inference(path):
audio = load_data(path)
inputs = gr.inputs.Audio(label="Input Audio", type="filepath", source="microphone")
outputs = gr.outputs.Label(type="auto", label = "Voice timestamps")
title = "Voice Activity Detection"
description = "Record or upload an audio file and detected human voices will be timestamped."
article = "<a href = 'pyannote, https://github.com/pyannote/pyannote-audio"
gr.Interface(inference, inputs, outputs, title=title, description=description, article=article, theme="dark").launch(debug=True)