File size: 19,371 Bytes
30857ba
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
import os
import shutil
from fuzzywuzzy import fuzz
from tqdm import tqdm
from PIL import Image
import requests
# from surya.layout import LayoutPredictor

from doctr.io import DocumentFile
from pdf2image import convert_from_path
import pymupdf
# from doctr.models import ocr_predictor
import numpy as np
from time import time

pipe = None
layout_predictor = None

MAX_BLOCK_MATCHES = 2
MAX_LINE_MATCHES = 5
CUT_OFF_THRESHOLD = 60
QUESTION_WEIGHT = 0.2
ANSWER_WEIGHT = 0.8
LEVEL = "line"

jpg_options = {
    "quality"    : 100,
    "progressive": True,
    "optimize"   : False
}

stop_words = {'what', 'is', 'the', 'this', 'that', 'these', 'those', 'which', 'how', 'why', 'where', 'when', 'who', 'will', 'be', 'and', 'or', 'in', 'at', 'to', 'for', 'of', 'with', 'by'}

def longest_consecutive_range(indices):
    if not indices:
        return []

    indices = sorted(set(indices))
    longest = []
    current = [indices[0]]

    for i in range(1, len(indices)):
        if indices[i] == indices[i - 1] + 1:
            current.append(indices[i])
        else:
            if len(current) > len(longest):
                longest = current
            current = [indices[i]]

    if len(current) > len(longest):
        longest = current

    return longest


def get_word_level_matches(answer_text, top_k_matches):
    bboxes = []
    for match in top_k_matches:
        indices = []
        for index, word in enumerate(match['words']):
            if word['text'].lower() in answer_text.lower():
                # bboxes.append(word['bbox'])
                indices.append(index)
        longest_indices = longest_consecutive_range(indices)
        for index in longest_indices:
            bboxes.append(match['words'][index]['bbox'])
    return bboxes


def get_matched_regions(question_text, target_text, predictions, level):

    question_terms = [word.lower() for word in question_text.split() if word.lower() not in stop_words]
    matched_regions = []
    for region in predictions:
        region_text = region['text']
        region_copy = region.copy()

        if target_text.lower() in region_text.lower():
            region_copy['match_score'] = 100
            region_copy['match_details'] = {
                    'exact_match': True,
                    'answer_score': 100,
                    'question_score': 100
                }
            matched_regions.append(region_copy)
            continue

        partial_score = fuzz.partial_ratio(target_text.lower(), region_text.lower())
        token_score = fuzz.token_set_ratio(target_text.lower(), region_text.lower())
        
        # Calculate length factor (preference for longer matches that contain meaningful content)
        target_len = len(target_text)
        region_len = len(region_text)
        length_factor = min(1.0, region_len / min(50, target_len))  # Cap at 1.0, adapt based on target length
        
        # Combine scores for answer with weights
        # Higher weight to token matching for longer texts, higher weight to partial matching for shorter texts
        if region_len > 10:
            answer_score = (partial_score * 0.3) + (token_score * 0.5) + (length_factor * 100 * 0.2)
        else:
            # For very short texts, reduce their overall score unless they're exact matches
            answer_score = (partial_score * 0.3) + (token_score * 0.4) + (length_factor * 100 * 0.3)
            if region_len < 5 and partial_score < 100:
                answer_score *= 0.5  # Penalize very short inexact matches

        # penalize shorter region_texts
        if region_len < 5:
            answer_score *= 0.5
        
        # Calculate fuzzy match scores for question terms using both methods
        partial_question_scores = [fuzz.partial_ratio(term, region_text.lower()) for term in question_terms]
        token_question_scores = [fuzz.token_set_ratio(term, region_text.lower()) for term in question_terms]
        
        # Get best scores for question terms
        best_partial_question = max(partial_question_scores) if partial_question_scores else 0
        best_token_question = max(token_question_scores) if token_question_scores else 0
        
        # Combine question scores
        question_score = (best_partial_question * 0.4) + (best_token_question * 0.6)
        
        # Combine scores (giving more weight to answer matches)
        combined_score = (answer_score * ANSWER_WEIGHT) + (question_score * QUESTION_WEIGHT)

        # print(combined_score)
        
        if combined_score >= CUT_OFF_THRESHOLD:
            region_copy['match_score'] = combined_score
            region_copy['match_details'] = {
                'exact_match': False,
                'answer_score': answer_score,
                'question_score': question_score,
                'answer_weight': ANSWER_WEIGHT,
                'question_weight': QUESTION_WEIGHT
            }
            matched_regions.append(region_copy)


    matched_regions.sort(key=lambda x: x['match_score'], reverse=True)
    
    # If no matches, reduce threshold by 20 and get the topmost single output
    if not matched_regions:
        new_threshold = max(CUT_OFF_THRESHOLD - 20, 0)  # Prevent negative threshold
        matched_regions = [region for region in matched_regions if region['match_score'] >= new_threshold]
        matched_regions.sort(key=lambda x: x['match_score'], reverse=True)
        if matched_regions:
            matched_regions = [matched_regions[0]]  # Only keep the topmost single output

    if level == "block":
        top_matches = matched_regions[:MAX_BLOCK_MATCHES]
    elif level == "line":
        top_matches = matched_regions[:MAX_LINE_MATCHES]
    return top_matches


def get_processed_text_for_llm(block_predictions, gap):
    final_text = ""
    for block_data in block_predictions:
        final_text += block_data['text'] + gap
    return final_text


def get_page_number(block_bboxes):
    pages = {}
    for block in block_bboxes:
        if block['page'] not in pages:
            pages[block['page']] = 1
        else:
            pages[block['page']] += 1

    print(pages)
    max_page = max(pages, key=pages.get)
    return max_page


def predict_output(document_path, question, pipe, layout_predictor, model, model_type, document_type="image"):

    predicted_answer = None
    block_box_predictions = None
    line_box_predictions = None
    word_box_predictions = None
    point_box_predictions = None


    curr_time = time()
    line_predictions, pages_count = get_line_predictions(document_path, model, document_type)
    line_time = time()
    print(f"Done with line predictions in {line_time - curr_time} seconds")
    curr_time = time()
    if(document_type == "pdf" and pages_count < 3):
        block_predictions = get_block_predictions(document_path, layout_predictor, model, document_type)
        gap = '\n\n\n'
    else:
        block_predictions = line_predictions
        gap = '\n'
    block_time = time()
    print(f"Done with block predictions in {block_time - line_time} seconds")
    # exit()

    # print(line_predictions)
    # print(block_predictions)

    
    curr_time = time()
    if model_type == "MGVG" or document_type=="pdf":
        processed_text_for_llm = get_processed_text_for_llm(block_predictions, gap=gap)
        # print("Processed Text for LLM: ", processed_text_for_llm)
        predicted_answer = generate_llm_answer(question, processed_text_for_llm, pipe)
        
    elif model_type == "IndoDocs":
        predicted_answer = generate_via_inhouse_model_answer(question, document_path)
    llm_time = time()
    print(f"Done with LLM in {llm_time - curr_time} seconds")

    print("LLM Answer: ", predicted_answer)
    

    total_algo_time = time()

    # print(predicted_answer)
    curr_time = time()
    
    line_matches = get_matched_regions(question, predicted_answer, line_predictions, "line")

    
    block_bboxes = get_matched_regions(question, predicted_answer, block_predictions, "block")
    match_time = time()
    print(f"Done with match in {match_time - curr_time} seconds")


    if document_type == "pdf":
        current_page = get_page_number(block_bboxes)
    else:
        current_page = -1

    if(current_page != -1):
        predicted_answer = "Answer predicted from page: " + str(current_page+1) + "\n" + predicted_answer

    block_box_predictions = []
    for match in block_bboxes:
        block_box_predictions.append(match['bbox'])

    line_box_predictions = []
    for match in line_matches:
        # print(match['page'], match['bbox'])
        if current_page == -1 or match['page'] == current_page:
            line_box_predictions.append(match['bbox'])

    # for line in line_box_predictions:
    #     print(line)

    curr_time = time()
    word_box_predictions = get_word_level_matches(predicted_answer, top_k_matches=line_matches)
    word_time = time()
    print(f"Done with word in {word_time - curr_time} seconds")

    curr_time = time()
    point_box_predictions = get_point_level_matches(block_box_predictions, line_box_predictions, word_box_predictions)
    point_time = time()
    print(f"Done with point in {point_time - curr_time} seconds")
    
    print(f"Total algo time: {time() - total_algo_time} seconds")


    # print(block_box_predictions)
    # print(line_box_predictions)
    # print(word_box_predictions)
    # print(point_box_predictions)
    # print(predicted_answer)
    

    return predicted_answer, block_box_predictions, line_box_predictions, word_box_predictions, point_box_predictions, current_page


def calculate_midpoint_of_bboxes(bboxes):

    if not bboxes:
        return None
    
    # Convert to numpy array for easier manipulation
    bboxes = np.array(bboxes)
    
    # Find the extreme points of all bboxes combined
    min_x = np.min(bboxes[:, 0])
    min_y = np.min(bboxes[:, 1])
    max_x = np.max(bboxes[:, 2])
    max_y = np.max(bboxes[:, 3])
    
    # Calculate midpoint
    midpoint_x = (min_x + max_x) / 2
    midpoint_y = (min_y + max_y) / 2
    
    return round(midpoint_x, 2), round(midpoint_y, 2)


def get_point_level_matches(block_box_predictions, line_box_predictions, word_box_predictions):

    point_box_predictions = []

    if len(block_box_predictions) ==1:
        try:
            x, y = calculate_midpoint_of_bboxes(block_box_predictions)
            point_box_predictions = [[x, y]]
            # print(x, y)
        except:
            try:
                x, y = calculate_midpoint_of_bboxes(line_box_predictions)
                point_box_predictions = [[x, y]]
            except:
                point_box_predictions = []
    else:
        points = []
        for block_bbox in block_box_predictions:
            try:
                x, y = calculate_midpoint_of_bboxes(block_bbox)
                points.append([x, y])
            except:
                continue
        point_box_predictions = points
    
    return point_box_predictions


def generate_via_inhouse_model_answer(question, image_path, api_key="VISION-TEAM", max_tokens=512, temperature=0.7, endpoint="http://103.207.148.38:9000/api/v1/chat/upload"):
    headers = {
        "x-api-key": api_key  # or whatever the Swagger UI says
    }

    files = {
        "image": open(image_path, "rb")
    }

    data = {
        "text": question,
        "max_tokens": str(max_tokens),
        "temperature": str(temperature)
    }

    try:
        response = requests.post(endpoint, headers=headers, files=files, data=data)
        response.raise_for_status()
        result = response.json()
    except requests.exceptions.RequestException as e:
        return {"error": str(e)}

    return result['response']['choices'][0]['message']['content']

def generate_llm_answer(question, context, pipe):

    prompt = f"""You are given a question and context. Your task is to find and return the best possible answer to the question using only the context as it is. 
Do not generate summaries, paraphrased content, or any additional explanations including any preamble and postamble. 
Return only the exact phrase or sentence fragment from the context that answers the question. 
If the answer is not found in the context, return: Answer not found in context.

Question: {question}
Context: {context}
Answer:
"""

    messages = [ {"role": "user", "content": prompt}]
    result = pipe(messages, max_new_tokens=512, do_sample=True, temperature=0.7)
    ans = result[0]["generated_text"][1]['content']
    return ans
    

def get_line_predictions(document_path, model, document_type):

    current_dir = os.getcwd()
    if document_type == "pdf":
        output_file = simple_counter_generator("page", ".jpg")
        current_dir = os.getcwd()
        temp_output_folder = os.path.join(current_dir, "temp_output_folder/")

        # delete the temp_output_folder
        if os.path.exists(temp_output_folder):
            shutil.rmtree(temp_output_folder)

        if not os.path.exists(temp_output_folder):
            os.makedirs(temp_output_folder)
        # output_file = simple_counter_generator("page", ".jpg")
        # convert_from_path(document_path, output_folder=temp_output_folder, dpi=300, fmt='jpeg', jpegopt= jpg_options, output_file=output_file)

        doc = pymupdf.open(document_path)  # open document
        for page in doc:  # iterate through the pages
            pix = page.get_pixmap()  # render page to an image
            pix.save(f"{temp_output_folder}/{page.number}.png")  

        images_path = sorted(os.listdir(temp_output_folder))
    else:

        images_path = [os.path.join(current_dir, document_path)]
        print(images_path)

    block_predictions = []
    # print(document_path)
    # if document_type == "pdf":
    #     doc = DocumentFile.from_pdf(document_path)
    # else:
    #     doc = DocumentFile.from_images(document_path)
    # result = model(doc)

    line_predictions = []

    pages_count = -1
    for image_path in images_path:
        pages_count += 1

        if(len(images_path) > 1):
            doc = DocumentFile.from_images(os.path.join(temp_output_folder, image_path))
        else:
            doc = DocumentFile.from_images(image_path)


        result = model(doc)
        for page in result.pages:     
            dim = tuple(reversed(page.dimensions))
            for block in page.blocks:
                for line in block.lines:
                    output = {}
                    geo = line.geometry
                    a = list(a*b for a,b in zip(geo[0],dim))
                    b = list(a*b for a,b in zip(geo[1],dim))
                    x1 = round(a[0], 2).astype(float)
                    y1 = round(a[1], 2).astype(float)
                    x2 = round(b[0], 2).astype(float)
                    y2 = round(b[1], 2).astype(float)
                    line_bbox = [x1, y1, x2, y2]
                    
                    sent = []
                    words_data = []
                    for word in line.words:
                        word_data = {}
                        sent.append(word.value)
                        geo = word.geometry
                        a = list(a*b for a,b in zip(geo[0],dim))
                        b = list(a*b for a,b in zip(geo[1],dim))
                        x1 = round(a[0], 2).astype(float)
                        y1 = round(a[1], 2).astype(float)
                        x2 = round(b[0], 2).astype(float)
                        y2 = round(b[1], 2).astype(float)
                        bbox = [x1, y1, x2, y2]
                        
                        word_data['bbox'] = bbox
                        word_data['text'] = word.value
                        words_data.append(word_data)
                    output['bbox'] = line_bbox
                    output['text'] = " ".join(sent)
                    output['words'] = words_data
                    output['page'] = pages_count
                    line_predictions.append(output)

    return line_predictions, pages_count


def get_block_predictions(document_path, layout_predictor, model, document_type):
    current_dir = os.getcwd()
    if document_type == "pdf":
        output_file = simple_counter_generator("page", ".jpg")
        current_dir = os.getcwd()
        temp_output_folder = os.path.join(current_dir, "temp_output_folder/")

        # delete the temp_output_folder
        if os.path.exists(temp_output_folder):
            shutil.rmtree(temp_output_folder)

        if not os.path.exists(temp_output_folder):
            os.makedirs(temp_output_folder)
        # output_file = simple_counter_generator("page", ".jpg")
        # convert_from_path(document_path, output_folder=temp_output_folder, dpi=300, fmt='jpeg', jpegopt= jpg_options, output_file=output_file)

        doc = pymupdf.open(document_path)  # open document
        for page in doc:  # iterate through the pages
            pix = page.get_pixmap()  # render page to an image
            pix.save(f"{temp_output_folder}/{page.number}.png")  

        images_path = sorted(os.listdir(temp_output_folder))
    else:
        
        images_path = [os.path.join(current_dir, document_path)]
        # print(images_path)

    block_predictions = []
    


    page_count = -1
    for image_path in images_path:
        page_count += 1

        if(len(images_path) > 1):
            image = Image.open(os.path.join(temp_output_folder, image_path))
        else:
            image = Image.open(os.path.join(current_dir, document_path))

        # print(image_path)
        # print(image)

        layout_predictions = layout_predictor([image])

        for block in layout_predictions[0].bboxes:
            output = {}
            bbox = [int(x) for x in block.bbox]
            

            cropped_image = image.crop(bbox)

            cropped_image.save(f'temp.png')
            doc = DocumentFile.from_images('temp.png')
            result = model(doc)

            text = []
            for page in result.pages:
                for block in page.blocks:
                    for line in block.lines:
                        for word in line.words:
                            text.append(word.value)


            output['bbox'] = bbox
            output['text'] = " ".join(text)
            output['page'] = page_count
            block_predictions.append(output)
    
    return block_predictions

def simple_counter_generator(prefix="", suffix=""):
    while True:
        yield 'p'



# from doctr.models import ocr_predictor
# model = ocr_predictor(det_arch='db_resnet50', reco_arch='crnn_vgg16_bn', pretrained=True)


# # from transformers import pipeline
# # def load_llm_model(device):
# #     pipe = pipeline("text-generation", model="meta-llama/Meta-Llama-3.1-8B-Instruct", device=device)
# #     return pipe

# # pipe = load_llm_model("cuda")
# pipe = None

# # from surya.layout import LayoutPredictor
# # layout_predictor = LayoutPredictor()
# layout_predictor = None

# document_path = "sample.pdf"
# question = "What is the subject of the circular?"

# answer, block_box_predictions, line_box_predictions, word_box_predictions, point_box_predictions = predict_output(document_path, question, pipe, layout_predictor, model, "Inhouse", document_type="pdf")

# print(answer)
# print(block_box_predictions)
# print(line_box_predictions)
# print(word_box_predictions)
# print(point_box_predictions)