import json import os # Load JSON data from environment variable and parse it json_data = os.getenv('PROMPT_TEMPLATES', '{}') prompt_data = json.loads(json_data) # Create dictionaries from the JSON data metaprompt_explanations = { key: data["description"] for key, data in prompt_data.items() } # Generate markdown explanation explanation_markdown = "".join([ f"- **{key}**: {value}\n" for key, value in metaprompt_explanations.items() ]) # Define models list models = [ # Meta-Llama models (all support system) "meta-llama/Meta-Llama-3-70B-Instruct", "meta-llama/Meta-Llama-3-8B-Instruct", "meta-llama/Llama-3.1-70B-Instruct", "meta-llama/Llama-3.1-8B-Instruct", "meta-llama/Llama-3.2-3B-Instruct", "meta-llama/Llama-3.2-1B-Instruct", "meta-llama/Llama-2-13b-chat-hf", "meta-llama/Llama-2-7b-chat-hf", # HuggingFaceH4 models (support system) "HuggingFaceH4/zephyr-7b-beta", "HuggingFaceH4/zephyr-7b-alpha", # Qwen models (support system) "Qwen/Qwen2.5-72B-Instruct", "Qwen/Qwen2.5-1.5B", "microsoft/Phi-3.5-mini-instruct" ] # Check for API token api_token = os.getenv('HF_API_TOKEN') if not api_token: raise ValueError("HF_API_TOKEN not found in environment variables") # Store templates in a dictionary meta_prompts = { key: data["template"] for key, data in prompt_data.items() }