Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,22 +1,22 @@
|
|
1 |
import os
|
2 |
import json
|
|
|
3 |
from huggingface_hub import InferenceClient
|
4 |
import gradio as gr
|
5 |
from pydantic import BaseModel, Field
|
6 |
-
from typing import Optional, Literal
|
7 |
from huggingface_hub.errors import HfHubHTTPError
|
8 |
|
9 |
-
|
10 |
-
# Input model
|
11 |
class PromptInput(BaseModel):
|
12 |
text: str = Field(..., description="The initial prompt text")
|
13 |
-
meta_prompt_choice: Literal["star",
|
14 |
|
15 |
-
|
16 |
-
|
17 |
-
initial_prompt_evaluation: str =
|
18 |
-
refined_prompt: str =
|
19 |
-
explanation_of_refinements: str =
|
|
|
20 |
|
21 |
class PromptRefiner:
|
22 |
def __init__(self, api_token: str):
|
@@ -34,23 +34,19 @@ class PromptRefiner:
|
|
34 |
|
35 |
def refine_prompt(self, prompt_input: PromptInput) -> tuple:
|
36 |
try:
|
|
|
37 |
selected_meta_prompt = self.meta_prompts.get(
|
38 |
-
prompt_input.meta_prompt_choice,
|
39 |
advanced_meta_prompt
|
40 |
)
|
41 |
-
|
42 |
messages = [
|
43 |
{
|
44 |
-
"role": "system",
|
45 |
-
"content": '
|
46 |
-
{
|
47 |
-
"initial_prompt_evaluation": "your evaluation",
|
48 |
-
"refined_prompt": "your refined prompt",
|
49 |
-
"explanation_of_refinements": "your explanation"
|
50 |
-
}'''
|
51 |
},
|
52 |
{
|
53 |
-
"role": "user",
|
54 |
"content": selected_meta_prompt.replace("[Insert initial prompt here]", prompt_input.text)
|
55 |
}
|
56 |
]
|
@@ -59,81 +55,101 @@ class PromptRefiner:
|
|
59 |
model=prompt_refiner_model,
|
60 |
messages=messages,
|
61 |
max_tokens=2000,
|
62 |
-
temperature=0.8
|
63 |
-
response_format={"type": "json_object"}
|
64 |
)
|
65 |
-
|
66 |
-
# Parse response using Pydantic
|
67 |
response_content = response.choices[0].message.content.strip()
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
# Fallback to basic dict if JSON parsing fails
|
73 |
-
result = {
|
74 |
-
"initial_prompt_evaluation": response_content,
|
75 |
-
"refined_prompt": prompt_input.text,
|
76 |
-
"explanation_of_refinements": "Failed to parse model response"
|
77 |
-
}
|
78 |
-
|
79 |
return (
|
80 |
-
result
|
81 |
-
result
|
82 |
-
result
|
83 |
result
|
84 |
)
|
85 |
|
86 |
except HfHubHTTPError as e:
|
87 |
-
error_response = LLMResponse(
|
88 |
-
initial_prompt_evaluation="Error: Model timeout or connection issue",
|
89 |
-
refined_prompt=prompt_input.text,
|
90 |
-
explanation_of_refinements="Please try again in a few moments"
|
91 |
-
).model_dump()
|
92 |
return (
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
)
|
98 |
except Exception as e:
|
99 |
-
error_response = LLMResponse(
|
100 |
-
initial_prompt_evaluation=f"Error: {str(e)}",
|
101 |
-
refined_prompt=prompt_input.text,
|
102 |
-
explanation_of_refinements="An unexpected error occurred"
|
103 |
-
).model_dump()
|
104 |
return (
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
)
|
110 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
111 |
def apply_prompt(self, prompt: str, model: str) -> str:
|
112 |
try:
|
113 |
messages = [
|
114 |
{
|
115 |
"role": "system",
|
116 |
-
"content": "You are a helpful assistant. Answer in stylized version with latex format or markdown if relevant. Separate your answer into logical sections using level 2 headers (##) for sections and bolding (**) for subsections."
|
117 |
},
|
118 |
{
|
119 |
"role": "user",
|
120 |
"content": prompt
|
121 |
}
|
122 |
]
|
123 |
-
|
124 |
response = self.client.chat_completion(
|
125 |
model=model,
|
126 |
messages=messages,
|
127 |
max_tokens=2000,
|
128 |
temperature=0.8
|
129 |
)
|
130 |
-
|
131 |
-
|
132 |
-
|
|
|
133 |
except Exception as e:
|
134 |
return f"Error: {str(e)}"
|
135 |
|
136 |
-
|
137 |
class GradioInterface:
|
138 |
def __init__(self, prompt_refiner: PromptRefiner):
|
139 |
self.prompt_refiner = prompt_refiner
|
|
|
1 |
import os
|
2 |
import json
|
3 |
+
import re
|
4 |
from huggingface_hub import InferenceClient
|
5 |
import gradio as gr
|
6 |
from pydantic import BaseModel, Field
|
7 |
+
from typing import Optional, Literal
|
8 |
from huggingface_hub.errors import HfHubHTTPError
|
9 |
|
|
|
|
|
10 |
class PromptInput(BaseModel):
|
11 |
text: str = Field(..., description="The initial prompt text")
|
12 |
+
meta_prompt_choice: Literal["star","done","physics","morphosis", "verse", "phor","bolism","math","arpe"] = Field(..., description="Choice of meta prompt strategy")
|
13 |
|
14 |
+
class RefinementOutput(BaseModel):
|
15 |
+
query_analysis: Optional[str] = None
|
16 |
+
initial_prompt_evaluation: Optional[str] = None
|
17 |
+
refined_prompt: Optional[str] = None
|
18 |
+
explanation_of_refinements: Optional[str] = None
|
19 |
+
raw_content: Optional[str] = None
|
20 |
|
21 |
class PromptRefiner:
|
22 |
def __init__(self, api_token: str):
|
|
|
34 |
|
35 |
def refine_prompt(self, prompt_input: PromptInput) -> tuple:
|
36 |
try:
|
37 |
+
# Select meta prompt using dictionary instead of if-elif chain
|
38 |
selected_meta_prompt = self.meta_prompts.get(
|
39 |
+
prompt_input.meta_prompt_choice,
|
40 |
advanced_meta_prompt
|
41 |
)
|
42 |
+
|
43 |
messages = [
|
44 |
{
|
45 |
+
"role": "system",
|
46 |
+
"content": 'You are an expert at refining and extending prompts. Given a basic prompt, provide a more detailed.'
|
|
|
|
|
|
|
|
|
|
|
47 |
},
|
48 |
{
|
49 |
+
"role": "user",
|
50 |
"content": selected_meta_prompt.replace("[Insert initial prompt here]", prompt_input.text)
|
51 |
}
|
52 |
]
|
|
|
55 |
model=prompt_refiner_model,
|
56 |
messages=messages,
|
57 |
max_tokens=2000,
|
58 |
+
temperature=0.8
|
|
|
59 |
)
|
60 |
+
|
|
|
61 |
response_content = response.choices[0].message.content.strip()
|
62 |
+
|
63 |
+
# Parse the response
|
64 |
+
result = self._parse_response(response_content)
|
65 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
66 |
return (
|
67 |
+
result.get('initial_prompt_evaluation', ''),
|
68 |
+
result.get('refined_prompt', ''),
|
69 |
+
result.get('explanation_of_refinements', ''),
|
70 |
result
|
71 |
)
|
72 |
|
73 |
except HfHubHTTPError as e:
|
|
|
|
|
|
|
|
|
|
|
74 |
return (
|
75 |
+
"Error: Model timeout. Please try again later.",
|
76 |
+
"The selected model is currently experiencing high traffic.",
|
77 |
+
"The selected model is currently experiencing high traffic.",
|
78 |
+
{}
|
79 |
)
|
80 |
except Exception as e:
|
|
|
|
|
|
|
|
|
|
|
81 |
return (
|
82 |
+
f"Error: {str(e)}",
|
83 |
+
"",
|
84 |
+
"An unexpected error occurred.",
|
85 |
+
{}
|
86 |
)
|
87 |
|
88 |
+
def _parse_response(self, response_content: str) -> dict:
|
89 |
+
try:
|
90 |
+
# Try to find JSON in response
|
91 |
+
json_match = re.search(r'<json>\s*(.*?)\s*</json>', response_content, re.DOTALL)
|
92 |
+
if json_match:
|
93 |
+
json_str = json_match.group(1)
|
94 |
+
json_str = re.sub(r'\n\s*', ' ', json_str)
|
95 |
+
json_str = json_str.replace('"', '\\"')
|
96 |
+
json_output = json.loads(f'"{json_str}"')
|
97 |
+
|
98 |
+
if isinstance(json_output, str):
|
99 |
+
json_output = json.loads(json_output)
|
100 |
+
output={
|
101 |
+
key: value.replace('\\"', '"') if isinstance(value, str) else value
|
102 |
+
for key, value in json_output.items()
|
103 |
+
}
|
104 |
+
output['response_content']=json_output
|
105 |
+
# Clean up JSON values
|
106 |
+
return output
|
107 |
+
|
108 |
+
# Fallback to regex parsing if no JSON found
|
109 |
+
output = {}
|
110 |
+
for key in ["initial_prompt_evaluation", "refined_prompt", "explanation_of_refinements"]:
|
111 |
+
pattern = rf'"{key}":\s*"(.*?)"(?:,|\}})'
|
112 |
+
match = re.search(pattern, response_content, re.DOTALL)
|
113 |
+
output[key] = match.group(1).replace('\\n', '\n').replace('\\"', '"') if match else ""
|
114 |
+
output['response_content']=response_content
|
115 |
+
return output
|
116 |
+
|
117 |
+
except (json.JSONDecodeError, ValueError) as e:
|
118 |
+
print(f"Error parsing response: {e}")
|
119 |
+
print(f"Raw content: {response_content}")
|
120 |
+
return {
|
121 |
+
"initial_prompt_evaluation": "Error parsing response",
|
122 |
+
"refined_prompt": "",
|
123 |
+
"explanation_of_refinements": str(e),
|
124 |
+
'response_content':str(e)
|
125 |
+
}
|
126 |
+
|
127 |
def apply_prompt(self, prompt: str, model: str) -> str:
|
128 |
try:
|
129 |
messages = [
|
130 |
{
|
131 |
"role": "system",
|
132 |
+
"content": "You are a helpful assistant. Answer in stylized version with latex format or markdown if relevant. Separate your answer into logical sections using level 2 headers (##) for sections and bolding (**) for subsections. Incorporate a variety of lists, headers, and text to make the answer visually appealing"
|
133 |
},
|
134 |
{
|
135 |
"role": "user",
|
136 |
"content": prompt
|
137 |
}
|
138 |
]
|
139 |
+
|
140 |
response = self.client.chat_completion(
|
141 |
model=model,
|
142 |
messages=messages,
|
143 |
max_tokens=2000,
|
144 |
temperature=0.8
|
145 |
)
|
146 |
+
|
147 |
+
output = response.choices[0].message.content.strip()
|
148 |
+
return output.replace('\n\n', '\n').strip()
|
149 |
+
|
150 |
except Exception as e:
|
151 |
return f"Error: {str(e)}"
|
152 |
|
|
|
153 |
class GradioInterface:
|
154 |
def __init__(self, prompt_refiner: PromptRefiner):
|
155 |
self.prompt_refiner = prompt_refiner
|