Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
|
@@ -6,10 +6,16 @@ from pydantic import BaseModel, Field
|
|
| 6 |
from typing import Optional, Literal, Dict
|
| 7 |
from huggingface_hub.errors import HfHubHTTPError
|
| 8 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 9 |
class PromptInput(BaseModel):
|
| 10 |
text: str = Field(..., description="The initial prompt text")
|
| 11 |
meta_prompt_choice: Literal["star", "done", "physics", "morphosis", "verse", "phor", "bolism", "math", "arpe"] = Field(..., description="Choice of meta prompt strategy")
|
| 12 |
|
|
|
|
| 13 |
class LLMResponse(BaseModel):
|
| 14 |
initial_prompt_evaluation: str = Field(default="")
|
| 15 |
refined_prompt: str = Field(default="")
|
|
@@ -18,7 +24,7 @@ class LLMResponse(BaseModel):
|
|
| 18 |
class PromptRefiner:
|
| 19 |
def __init__(self, api_token: str):
|
| 20 |
self.client = InferenceClient(token=api_token, timeout=300)
|
| 21 |
-
self.meta_prompts
|
| 22 |
"morphosis": original_meta_prompt,
|
| 23 |
"verse": new_meta_prompt,
|
| 24 |
"physics": metaprompt1,
|
|
@@ -41,9 +47,9 @@ class PromptRefiner:
|
|
| 41 |
"role": "system",
|
| 42 |
"content": '''You are an expert at refining prompts. Respond in JSON format with exactly these fields:
|
| 43 |
{
|
| 44 |
-
"initial_prompt_evaluation": "your evaluation
|
| 45 |
-
"refined_prompt": "your refined
|
| 46 |
-
"explanation_of_refinements": "your explanation
|
| 47 |
}'''
|
| 48 |
},
|
| 49 |
{
|
|
@@ -65,12 +71,12 @@ class PromptRefiner:
|
|
| 65 |
try:
|
| 66 |
parsed_response = LLMResponse.model_validate_json(response_content)
|
| 67 |
result = parsed_response.model_dump()
|
| 68 |
-
except Exception
|
| 69 |
# Fallback to basic dict if JSON parsing fails
|
| 70 |
result = {
|
| 71 |
-
"initial_prompt_evaluation":
|
| 72 |
-
"refined_prompt":
|
| 73 |
-
"explanation_of_refinements":
|
| 74 |
}
|
| 75 |
|
| 76 |
return (
|
|
@@ -82,27 +88,27 @@ class PromptRefiner:
|
|
| 82 |
|
| 83 |
except HfHubHTTPError as e:
|
| 84 |
error_response = LLMResponse(
|
| 85 |
-
initial_prompt_evaluation="Error: Model timeout",
|
| 86 |
-
refined_prompt=
|
| 87 |
-
explanation_of_refinements="Please try again
|
| 88 |
-
)
|
| 89 |
return (
|
| 90 |
-
error_response
|
| 91 |
-
error_response
|
| 92 |
-
error_response
|
| 93 |
-
error_response
|
| 94 |
)
|
| 95 |
except Exception as e:
|
| 96 |
error_response = LLMResponse(
|
| 97 |
initial_prompt_evaluation=f"Error: {str(e)}",
|
| 98 |
-
refined_prompt=
|
| 99 |
explanation_of_refinements="An unexpected error occurred"
|
| 100 |
-
)
|
| 101 |
return (
|
| 102 |
-
error_response
|
| 103 |
-
error_response
|
| 104 |
-
error_response
|
| 105 |
-
error_response
|
| 106 |
)
|
| 107 |
|
| 108 |
def apply_prompt(self, prompt: str, model: str) -> str:
|
|
|
|
| 6 |
from typing import Optional, Literal, Dict
|
| 7 |
from huggingface_hub.errors import HfHubHTTPError
|
| 8 |
|
| 9 |
+
from pydantic import BaseModel, Field
|
| 10 |
+
from typing import Optional, Literal
|
| 11 |
+
from huggingface_hub.errors import HfHubHTTPError
|
| 12 |
+
|
| 13 |
+
# Input model
|
| 14 |
class PromptInput(BaseModel):
|
| 15 |
text: str = Field(..., description="The initial prompt text")
|
| 16 |
meta_prompt_choice: Literal["star", "done", "physics", "morphosis", "verse", "phor", "bolism", "math", "arpe"] = Field(..., description="Choice of meta prompt strategy")
|
| 17 |
|
| 18 |
+
# Output model for LLM responses
|
| 19 |
class LLMResponse(BaseModel):
|
| 20 |
initial_prompt_evaluation: str = Field(default="")
|
| 21 |
refined_prompt: str = Field(default="")
|
|
|
|
| 24 |
class PromptRefiner:
|
| 25 |
def __init__(self, api_token: str):
|
| 26 |
self.client = InferenceClient(token=api_token, timeout=300)
|
| 27 |
+
self.meta_prompts = {
|
| 28 |
"morphosis": original_meta_prompt,
|
| 29 |
"verse": new_meta_prompt,
|
| 30 |
"physics": metaprompt1,
|
|
|
|
| 47 |
"role": "system",
|
| 48 |
"content": '''You are an expert at refining prompts. Respond in JSON format with exactly these fields:
|
| 49 |
{
|
| 50 |
+
"initial_prompt_evaluation": "your evaluation",
|
| 51 |
+
"refined_prompt": "your refined prompt",
|
| 52 |
+
"explanation_of_refinements": "your explanation"
|
| 53 |
}'''
|
| 54 |
},
|
| 55 |
{
|
|
|
|
| 71 |
try:
|
| 72 |
parsed_response = LLMResponse.model_validate_json(response_content)
|
| 73 |
result = parsed_response.model_dump()
|
| 74 |
+
except Exception:
|
| 75 |
# Fallback to basic dict if JSON parsing fails
|
| 76 |
result = {
|
| 77 |
+
"initial_prompt_evaluation": response_content,
|
| 78 |
+
"refined_prompt": prompt_input.text,
|
| 79 |
+
"explanation_of_refinements": "Failed to parse model response"
|
| 80 |
}
|
| 81 |
|
| 82 |
return (
|
|
|
|
| 88 |
|
| 89 |
except HfHubHTTPError as e:
|
| 90 |
error_response = LLMResponse(
|
| 91 |
+
initial_prompt_evaluation="Error: Model timeout or connection issue",
|
| 92 |
+
refined_prompt=prompt_input.text,
|
| 93 |
+
explanation_of_refinements="Please try again in a few moments"
|
| 94 |
+
).model_dump()
|
| 95 |
return (
|
| 96 |
+
error_response["initial_prompt_evaluation"],
|
| 97 |
+
error_response["refined_prompt"],
|
| 98 |
+
error_response["explanation_of_refinements"],
|
| 99 |
+
error_response
|
| 100 |
)
|
| 101 |
except Exception as e:
|
| 102 |
error_response = LLMResponse(
|
| 103 |
initial_prompt_evaluation=f"Error: {str(e)}",
|
| 104 |
+
refined_prompt=prompt_input.text,
|
| 105 |
explanation_of_refinements="An unexpected error occurred"
|
| 106 |
+
).model_dump()
|
| 107 |
return (
|
| 108 |
+
error_response["initial_prompt_evaluation"],
|
| 109 |
+
error_response["refined_prompt"],
|
| 110 |
+
error_response["explanation_of_refinements"],
|
| 111 |
+
error_response
|
| 112 |
)
|
| 113 |
|
| 114 |
def apply_prompt(self, prompt: str, model: str) -> str:
|