Spaces:
Running
Running
Update variables.py
Browse files- variables.py +19 -10
variables.py
CHANGED
@@ -11,16 +11,30 @@ metaprompt_explanations = {
|
|
11 |
"bolism": "Utilize this method when working with autoregressive language models and when the task requires careful reasoning before conclusions. It's best for prompts that need detailed output formatting. Choose this over others when the prompt's structure and reasoning order are crucial."
|
12 |
}
|
13 |
|
14 |
-
# Load JSON data
|
15 |
-
PROMPT_DATA =
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
16 |
|
17 |
-
# Create metaprompt_explanations dictionary
|
18 |
metaprompt_explanations = {
|
19 |
-
prompt["name"].lower()
|
20 |
for prompt in PROMPT_DATA
|
21 |
}
|
22 |
|
23 |
|
|
|
|
|
|
|
|
|
|
|
|
|
24 |
models = [
|
25 |
# Meta-Llama models (all support system)
|
26 |
"meta-llama/Meta-Llama-3-70B-Instruct",
|
@@ -45,11 +59,6 @@ models = [
|
|
45 |
|
46 |
explanation_markdown = "".join([f"- **{key}**: {value}\n" for key, value in metaprompt_explanations.items()])
|
47 |
# Generate explanation markdown from JSON data
|
48 |
-
explanation_markdown = "".join([
|
49 |
-
f"- **{prompt['name'].lower().split()[0]}**: {prompt['description']}\n"
|
50 |
-
for prompt in PROMPT_DATA
|
51 |
-
])
|
52 |
-
|
53 |
|
54 |
|
55 |
meta_info=""
|
@@ -60,7 +69,7 @@ if not api_token:
|
|
60 |
|
61 |
# Store templates in a dictionary
|
62 |
meta_prompts = {
|
63 |
-
prompt["name"].lower()
|
64 |
for prompt in PROMPT_DATA
|
65 |
}
|
66 |
|
|
|
11 |
"bolism": "Utilize this method when working with autoregressive language models and when the task requires careful reasoning before conclusions. It's best for prompts that need detailed output formatting. Choose this over others when the prompt's structure and reasoning order are crucial."
|
12 |
}
|
13 |
|
14 |
+
# Load JSON data directly
|
15 |
+
PROMPT_DATA = [
|
16 |
+
{
|
17 |
+
"name": name,
|
18 |
+
"description": data["description"],
|
19 |
+
"template": data["template"],
|
20 |
+
"examples": data.get("examples", []) # Using get() to handle optional examples
|
21 |
+
}
|
22 |
+
for name, data in json.loads(os.getenv('PROMPT_TEMPLATES', '[]')).items()
|
23 |
+
]
|
24 |
|
25 |
+
# Create metaprompt_explanations dictionary
|
26 |
metaprompt_explanations = {
|
27 |
+
prompt["name"].lower(): prompt["description"]
|
28 |
for prompt in PROMPT_DATA
|
29 |
}
|
30 |
|
31 |
|
32 |
+
# Generate explanation markdown
|
33 |
+
explanation_markdown = "".join([
|
34 |
+
f"- **{key}**: {value}\n"
|
35 |
+
for key, value in metaprompt_explanations.items()
|
36 |
+
])
|
37 |
+
|
38 |
models = [
|
39 |
# Meta-Llama models (all support system)
|
40 |
"meta-llama/Meta-Llama-3-70B-Instruct",
|
|
|
59 |
|
60 |
explanation_markdown = "".join([f"- **{key}**: {value}\n" for key, value in metaprompt_explanations.items()])
|
61 |
# Generate explanation markdown from JSON data
|
|
|
|
|
|
|
|
|
|
|
62 |
|
63 |
|
64 |
meta_info=""
|
|
|
69 |
|
70 |
# Store templates in a dictionary
|
71 |
meta_prompts = {
|
72 |
+
prompt["name"].lower(): prompt["template"]
|
73 |
for prompt in PROMPT_DATA
|
74 |
}
|
75 |
|