File size: 13,752 Bytes
7ed59a1
 
49175b2
51d80c4
7ed59a1
 
49175b2
09cb397
51d80c4
 
046b80d
 
 
 
51d80c4
046b80d
 
 
 
 
 
 
 
7ed59a1
046b80d
 
 
 
 
 
 
 
 
 
 
 
 
 
49175b2
7ed59a1
09cb397
046b80d
 
09cb397
7ed59a1
046b80d
 
 
 
 
 
49175b2
046b80d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
49175b2
046b80d
 
 
 
49175b2
046b80d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
49175b2
046b80d
 
 
 
 
 
 
 
 
49175b2
046b80d
 
 
 
 
 
 
 
09cb397
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
49175b2
046b80d
 
 
09cb397
 
046b80d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
09cb397
046b80d
 
 
 
 
 
 
 
51d80c4
046b80d
 
 
 
7ed59a1
046b80d
 
 
09cb397
046b80d
 
 
 
 
49175b2
046b80d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
import json
import re
from typing import Optional, Dict, Any, Union, List, Tuple
from pydantic import BaseModel, Field, validator
from huggingface_hub import InferenceClient
from huggingface_hub.errors import HfHubHTTPError
from variables import *
from metaprompt_router import metaprompt_router

class LLMResponse(BaseModel):
  initial_prompt_evaluation: str = Field(..., description="Evaluation of the initial prompt")
  refined_prompt: str = Field(..., description="The refined version of the prompt")
  explanation_of_refinements: Union[str, List[str]] = Field(..., description="Explanation of the refinements made")
  response_content: Optional[Union[Dict[str, Any], str]] = Field(None, description="Raw response content")

  @validator('response_content', pre=True)
  def validate_response_content(cls, v):
      if isinstance(v, str):
          try:
              return json.loads(v)
          except json.JSONDecodeError:
              return {"raw_content": v}
      return v

  @validator('initial_prompt_evaluation', 'refined_prompt')
  def clean_text_fields(cls, v):
      if isinstance(v, str):
          return v.strip().replace('\\n', '\n').replace('\\"', '"')
      return v

  @validator('explanation_of_refinements')
  def clean_refinements(cls, v):
      if isinstance(v, str):
          return v.strip().replace('\\n', '\n').replace('\\"', '"')
      elif isinstance(v, list):
          return [item.strip().replace('\\n', '\n').replace('\\"', '"').replace('•', '-') 
                 for item in v if isinstance(item, str)]
      return v

class PromptRefiner:
  def __init__(self, api_token: str, meta_prompts: dict,metaprompt_explanations: dict):
      self.client = InferenceClient(token=api_token, timeout=120)
      self.meta_prompts = meta_prompts
      self.metaprompt_explanations=metaprompt_explanations

  def _clean_json_string(self, content: str) -> str:
      """Clean and prepare JSON string for parsing."""
      content = content.replace('•', '-')  # Replace bullet points
      content = re.sub(r'\s+', ' ', content)  # Normalize whitespace
      content = content.replace('\\"', '"')  # Fix escaped quotes
      return content.strip()

  def _parse_response(self, response_content: str) -> dict:
      """Parse the LLM response with enhanced error handling."""
      try:
          # Extract content between <json> tags
          json_match = re.search(r'<json>\s*(.*?)\s*</json>', response_content, re.DOTALL)
          if json_match:
              json_str = self._clean_json_string(json_match.group(1))
              try:
                  # Try parsing the cleaned JSON
                  parsed_json = json.loads(json_str)
                  if isinstance(parsed_json, str):
                      parsed_json = json.loads(parsed_json)
                  
                  return {
                      "initial_prompt_evaluation": parsed_json.get("initial_prompt_evaluation", ""),
                      "refined_prompt": parsed_json.get("refined_prompt", ""),
                      "explanation_of_refinements": parsed_json.get("explanation_of_refinements", ""),
                      "response_content": parsed_json if isinstance(parsed_json, dict) else {"raw_content": parsed_json}
                  }
              except json.JSONDecodeError:
                  # If JSON parsing fails, try regex parsing
                  return self._parse_with_regex(json_str)
          
          # If no JSON tags found, try regex parsing
          return self._parse_with_regex(response_content)

      except Exception as e:
          print(f"Error parsing response: {str(e)}")
          print(f"Raw content: {response_content}")
          return self._create_error_dict(str(e))

  def _parse_with_regex(self, content: str) -> dict:
      """Parse content using regex when JSON parsing fails."""
      output = {}
      
      # Handle explanation_of_refinements list format
      refinements_match = re.search(r'"explanation_of_refinements":\s*$(.*?)$', content, re.DOTALL)
      if refinements_match:
          refinements_str = refinements_match.group(1)
          refinements = [
              item.strip().strip('"').strip("'").replace('•', '-')
              for item in re.findall(r'[•"]([^"•]+)[•"]', refinements_str)
          ]
          output["explanation_of_refinements"] = refinements
      else:
          # Try single string format
          pattern = r'"explanation_of_refinements":\s*"(.*?)"(?:,|\})'
          match = re.search(pattern, content, re.DOTALL)
          output["explanation_of_refinements"] = match.group(1).strip() if match else ""

      # Extract other fields
      for key in ["initial_prompt_evaluation", "refined_prompt"]:
          pattern = rf'"{key}":\s*"(.*?)"(?:,|\}})'
          match = re.search(pattern, content, re.DOTALL)
          output[key] = match.group(1).strip() if match else ""
      
      # Store the original content in a structured way
      output["response_content"] = {"raw_content": content}
      return output

  def _create_error_dict(self, error_message: str) -> dict:
      """Create a standardized error response dictionary."""
      return {
          "initial_prompt_evaluation": f"Error parsing response: {error_message}",
          "refined_prompt": "",
          "explanation_of_refinements": "",
          "response_content": {"error": error_message}
      }
      
  def automatic_metaprompt(self, prompt: str, meta_prompt_choice: str) -> Tuple[str, str, str, dict]:
      """Automatically select and apply the most appropriate metaprompt for the given prompt."""
      try:
          # First, use the router to determine the best metaprompt
          router_messages = [
              {
                  "role": "system",
                  "content": "You are an AI Prompt Selection Assistant that helps choose the most appropriate metaprompt based on the user's query."
              },
              {
                  "role": "user",
                  "content": metaprompt_router.replace("[Insert initial prompt here]", prompt)
              }
          ]
    
          # Get router response
          router_response = self.client.chat_completion(
              model=prompt_refiner_model,
              messages=router_messages,
              max_tokens=3000,
              temperature=0.2
          )
    
          router_content = router_response.choices[0].message.content.strip()
          
          # Extract JSON from router response
          json_match = re.search(r'<json>(.*?)</json>', router_content, re.DOTALL)
          if not json_match:
              raise ValueError("No JSON found in router response")
              
          router_result = json.loads(json_match.group(1))
          
          # Get the recommended metaprompt key
          recommended_key = router_result["recommended_metaprompt"]["key"]
          
          # Use the recommended metaprompt to refine the prompt
          selected_meta_prompt = self.meta_prompts.get(recommended_key)
          selected_meta_prompt_explanations = self.metaprompt_explanations.get(recommended_key)
          
          # Now use the selected metaprompt to refine the original prompt
          refine_messages = [
              {
                  "role": "system",
                  "content": 'You are an expert at refining and extending prompts. Given a basic prompt, provide a more relevant and detailed prompt.'
              },
              {
                  "role": "user",
                  "content": selected_meta_prompt.replace("[Insert initial prompt here]", prompt)
              }
          ]
    
          response = self.client.chat_completion(
              model=prompt_refiner_model,
              messages=refine_messages,
              max_tokens=3000,
              temperature=0.8
          )
    
          response_content = response.choices[0].message.content.strip()
          result = self._parse_response(response_content)
    
          try:
              llm_response = LLMResponse(**result)
              metaprompt_analysis = f"""
                    #### Selected MetaPrompt Analysis
                    - <span style="color: grey; font-style: italic;">**Primary Choice**</span>: *{router_result["recommended_metaprompt"]["name"]}*
                    - *Description*: *{router_result["recommended_metaprompt"]["description"]}*
                    - *Why This Choice*: *{router_result["recommended_metaprompt"]["explanation"]}*
                    
                    #### Alternative Option
                    - <span style="color: grey; font-style: italic;">**Secondary Choice**</span>: *{router_result["alternative_recommendation"]["name"]}*
                    - *Why Consider This*: *{router_result["alternative_recommendation"]["explanation"]}*
                    """
              return (
                  metaprompt_analysis,
                  llm_response.initial_prompt_evaluation,
                  llm_response.refined_prompt,
                  llm_response.explanation_of_refinements,
                  llm_response.dict()
              )
          except Exception as e:
              print(f"Error creating LLMResponse: {e}")
              return self._create_error_response(f"Error validating response: {str(e)}")
    
      except HfHubHTTPError as e:
          return self._create_error_response("Model timeout. Please try again later.")
      except Exception as e:
          return self._create_error_response(f"Unexpected error: {str(e)}")



  def refine_prompt(self, prompt: str, meta_prompt_choice: str) -> Tuple[str, str, str, dict]:
      """Refine the given prompt using the selected meta prompt."""
      try:
          selected_meta_prompt = self.meta_prompts.get(meta_prompt_choice)
          selected_meta_prompt_explanations = self.metaprompt_explanations.get(meta_prompt_choice)
          
          messages = [
              {
                  "role": "system", 
                  "content": 'You are an expert at refining and extending prompts. Given a basic prompt, provide a more relevant and detailed prompt.'
              },
              {
                  "role": "user", 
                  "content": selected_meta_prompt.replace("[Insert initial prompt here]", prompt)
              }
          ]
          
          response = self.client.chat_completion(
              model=prompt_refiner_model,
              messages=messages,
              max_tokens=3000,
              temperature=0.8
          )
          
          response_content = response.choices[0].message.content.strip()
          result = self._parse_response(response_content)
          
          try:
              llm_response = LLMResponse(**result)
              return (
                  f"- **{meta_prompt_choice}**: {selected_meta_prompt_explanations}",
                  llm_response.initial_prompt_evaluation,
                  llm_response.refined_prompt,
                  llm_response.explanation_of_refinements,
                  llm_response.dict()
              )
          except Exception as e:
              print(f"Error creating LLMResponse: {e}")
              return self._create_error_response(f"Error validating response: {str(e)}")

      except HfHubHTTPError as e:
          return self._create_error_response("Model timeout. Please try again later.")
      except Exception as e:
          return self._create_error_response(f"Unexpected error: {str(e)}")

  def _create_error_response(self, error_message: str) -> Tuple[str, str, str, dict]:
      """Create a standardized error response tuple."""
      return (
          f"Error: {error_message}",
          f"Error: {error_message}",
          "The selected model is currently unavailable.",
          "An error occurred during processing.",
          {"error": error_message}
      )

  def apply_prompt(self, prompt: str, model: str) -> str:
      """Apply formatting to the prompt using the specified model."""
      try:
          messages = [
              {
                  "role": "system",
                  "content": """You are a markdown formatting expert. Format your responses with proper spacing and structure following these rules:
                      1. Paragraph Spacing:
                      - Add TWO blank lines between major sections (##)
                      - Add ONE blank line between subsections (###)
                      - Add ONE blank line between paragraphs within sections
                      - Add ONE blank line before and after lists
                      - Add ONE blank line before and after code blocks
                      - Add ONE blank line before and after blockquotes
                      
                      2. Section Formatting:
                      # Title
                      
                      ## Major Section
                      
                      [blank line]
                      Content paragraph 1
                      [blank line]
                      Content paragraph 2
                      [blank line]"""
              },
              {
                  "role": "user",
                  "content": prompt
              }
          ]
  
          response = self.client.chat_completion(
              model=model,
              messages=messages,
              max_tokens=3000,
              temperature=0.8,
              stream=True
          )
          
          full_response = ""
          for chunk in response:
              if chunk.choices[0].delta.content is not None:
                  full_response += chunk.choices[0].delta.content
                  
          return full_response.replace('\n\n', '\n').strip()
              
      except Exception as e:
          return f"Error: {str(e)}"