Spaces:
Runtime error
Runtime error
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,112 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import json
|
2 |
+
import subprocess
|
3 |
+
from threading import Thread
|
4 |
+
import os
|
5 |
+
import torch
|
6 |
+
import spaces
|
7 |
+
import gradio as gr
|
8 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig, TextIteratorStreamer
|
9 |
+
|
10 |
+
# Update model configuration for Mistral-small-24B
|
11 |
+
MODEL_ID = "mistralai/Mistral-24B-v0.1"
|
12 |
+
CHAT_TEMPLATE = "mistral" # Mistral uses its own chat template
|
13 |
+
MODEL_NAME = MODEL_ID.split("/")[-1]
|
14 |
+
CONTEXT_LENGTH = 32768 # Mistral supports longer context
|
15 |
+
COLOR = "black"
|
16 |
+
EMOJI = "🌪️" # Mistral-themed emoji
|
17 |
+
DESCRIPTION = f"This is {MODEL_NAME} model, a powerful 24B parameter language model from Mistral AI."
|
18 |
+
|
19 |
+
def load_system_message():
|
20 |
+
try:
|
21 |
+
with open('system_message.txt', 'r', encoding='utf-8') as file:
|
22 |
+
return file.read().strip()
|
23 |
+
except FileNotFoundError:
|
24 |
+
print("Warning: system_message.txt not found. Using default message.")
|
25 |
+
return "You are a helpful assistant. First recognize the user request and then reply carefully with thinking."
|
26 |
+
except Exception as e:
|
27 |
+
print(f"Error loading system message: {e}")
|
28 |
+
return "You are a helpful assistant. First recognize the user request and then reply carefully with thinking."
|
29 |
+
|
30 |
+
SYSTEM_MESSAGE = load_system_message()
|
31 |
+
|
32 |
+
@spaces.GPU()
|
33 |
+
def predict(message, history, system_prompt, temperature, max_new_tokens, top_k, repetition_penalty, top_p):
|
34 |
+
# Format history using Mistral's chat template
|
35 |
+
messages = [{"role": "system", "content": SYSTEM_MESSAGE}]
|
36 |
+
|
37 |
+
for user, assistant in history:
|
38 |
+
messages.append({"role": "user", "content": user})
|
39 |
+
messages.append({"role": "assistant", "content": assistant})
|
40 |
+
|
41 |
+
messages.append({"role": "user", "content": message})
|
42 |
+
|
43 |
+
# Convert messages to Mistral format
|
44 |
+
prompt = tokenizer.apply_chat_template(messages, tokenize=False)
|
45 |
+
|
46 |
+
streamer = TextIteratorStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)
|
47 |
+
enc = tokenizer(prompt, return_tensors="pt", padding=True, truncation=True)
|
48 |
+
input_ids, attention_mask = enc.input_ids, enc.attention_mask
|
49 |
+
|
50 |
+
if input_ids.shape[1] > CONTEXT_LENGTH:
|
51 |
+
input_ids = input_ids[:, -CONTEXT_LENGTH:]
|
52 |
+
attention_mask = attention_mask[:, -CONTEXT_LENGTH:]
|
53 |
+
|
54 |
+
generate_kwargs = dict(
|
55 |
+
input_ids=input_ids.to(device),
|
56 |
+
attention_mask=attention_mask.to(device),
|
57 |
+
streamer=streamer,
|
58 |
+
do_sample=True,
|
59 |
+
temperature=temperature,
|
60 |
+
max_new_tokens=max_new_tokens,
|
61 |
+
top_k=top_k,
|
62 |
+
repetition_penalty=repetition_penalty,
|
63 |
+
top_p=top_p
|
64 |
+
)
|
65 |
+
|
66 |
+
t = Thread(target=model.generate, kwargs=generate_kwargs)
|
67 |
+
t.start()
|
68 |
+
|
69 |
+
outputs = []
|
70 |
+
for new_token in streamer:
|
71 |
+
outputs.append(new_token)
|
72 |
+
yield "".join(outputs)
|
73 |
+
|
74 |
+
# Load model with optimized settings for Mistral-24B
|
75 |
+
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
76 |
+
quantization_config = BitsAndBytesConfig(
|
77 |
+
load_in_4bit=True,
|
78 |
+
bnb_4bit_compute_dtype=torch.bfloat16,
|
79 |
+
use_double_quant=True, # Enable double quantization
|
80 |
+
bnb_4bit_quant_type="nf4" # Use normal float 4 for better precision
|
81 |
+
)
|
82 |
+
|
83 |
+
tokenizer = AutoTokenizer.from_pretrained(MODEL_ID)
|
84 |
+
model = AutoModelForCausalLM.from_pretrained(
|
85 |
+
MODEL_ID,
|
86 |
+
device_map="auto",
|
87 |
+
quantization_config=quantization_config,
|
88 |
+
use_flash_attention_2=True, # Enable Flash Attention 2 for better performance
|
89 |
+
torch_dtype=torch.bfloat16
|
90 |
+
)
|
91 |
+
|
92 |
+
# Create Gradio interface
|
93 |
+
gr.ChatInterface(
|
94 |
+
predict,
|
95 |
+
title=EMOJI + " " + MODEL_NAME,
|
96 |
+
description=DESCRIPTION,
|
97 |
+
examples=[
|
98 |
+
['What are the key differences between classical and quantum computing?'],
|
99 |
+
['Explain the concept of recursive neural networks in simple terms.'],
|
100 |
+
['How does transfer learning work in large language models?'],
|
101 |
+
['What are the ethical considerations in AI development?']
|
102 |
+
],
|
103 |
+
additional_inputs_accordion=gr.Accordion(label="⚙️ Parameters", open=False),
|
104 |
+
additional_inputs=[
|
105 |
+
gr.Textbox(SYSTEM_MESSAGE, label="System prompt", visible=False), # Hidden system prompt
|
106 |
+
gr.Slider(0, 1, 0.7, label="Temperature"), # Adjusted default for Mistral
|
107 |
+
gr.Slider(0, 32768, 12000, label="Max new tokens"), # Increased for longer context
|
108 |
+
gr.Slider(1, 100, 50, label="Top K sampling"),
|
109 |
+
gr.Slider(0, 2, 1.1, label="Repetition penalty"),
|
110 |
+
gr.Slider(0, 1, 0.95, label="Top P sampling"),
|
111 |
+
],
|
112 |
+
).queue().launch()
|