mmcgovern574 commited on
Commit
3cbe237
·
verified ·
1 Parent(s): e53bd40

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +112 -0
app.py ADDED
@@ -0,0 +1,112 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import json
2
+ import subprocess
3
+ from threading import Thread
4
+ import os
5
+ import torch
6
+ import spaces
7
+ import gradio as gr
8
+ from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig, TextIteratorStreamer
9
+
10
+ # Update model configuration for Mistral-small-24B
11
+ MODEL_ID = "mistralai/Mistral-24B-v0.1"
12
+ CHAT_TEMPLATE = "mistral" # Mistral uses its own chat template
13
+ MODEL_NAME = MODEL_ID.split("/")[-1]
14
+ CONTEXT_LENGTH = 32768 # Mistral supports longer context
15
+ COLOR = "black"
16
+ EMOJI = "🌪️" # Mistral-themed emoji
17
+ DESCRIPTION = f"This is {MODEL_NAME} model, a powerful 24B parameter language model from Mistral AI."
18
+
19
+ def load_system_message():
20
+ try:
21
+ with open('system_message.txt', 'r', encoding='utf-8') as file:
22
+ return file.read().strip()
23
+ except FileNotFoundError:
24
+ print("Warning: system_message.txt not found. Using default message.")
25
+ return "You are a helpful assistant. First recognize the user request and then reply carefully with thinking."
26
+ except Exception as e:
27
+ print(f"Error loading system message: {e}")
28
+ return "You are a helpful assistant. First recognize the user request and then reply carefully with thinking."
29
+
30
+ SYSTEM_MESSAGE = load_system_message()
31
+
32
+ @spaces.GPU()
33
+ def predict(message, history, system_prompt, temperature, max_new_tokens, top_k, repetition_penalty, top_p):
34
+ # Format history using Mistral's chat template
35
+ messages = [{"role": "system", "content": SYSTEM_MESSAGE}]
36
+
37
+ for user, assistant in history:
38
+ messages.append({"role": "user", "content": user})
39
+ messages.append({"role": "assistant", "content": assistant})
40
+
41
+ messages.append({"role": "user", "content": message})
42
+
43
+ # Convert messages to Mistral format
44
+ prompt = tokenizer.apply_chat_template(messages, tokenize=False)
45
+
46
+ streamer = TextIteratorStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)
47
+ enc = tokenizer(prompt, return_tensors="pt", padding=True, truncation=True)
48
+ input_ids, attention_mask = enc.input_ids, enc.attention_mask
49
+
50
+ if input_ids.shape[1] > CONTEXT_LENGTH:
51
+ input_ids = input_ids[:, -CONTEXT_LENGTH:]
52
+ attention_mask = attention_mask[:, -CONTEXT_LENGTH:]
53
+
54
+ generate_kwargs = dict(
55
+ input_ids=input_ids.to(device),
56
+ attention_mask=attention_mask.to(device),
57
+ streamer=streamer,
58
+ do_sample=True,
59
+ temperature=temperature,
60
+ max_new_tokens=max_new_tokens,
61
+ top_k=top_k,
62
+ repetition_penalty=repetition_penalty,
63
+ top_p=top_p
64
+ )
65
+
66
+ t = Thread(target=model.generate, kwargs=generate_kwargs)
67
+ t.start()
68
+
69
+ outputs = []
70
+ for new_token in streamer:
71
+ outputs.append(new_token)
72
+ yield "".join(outputs)
73
+
74
+ # Load model with optimized settings for Mistral-24B
75
+ device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
76
+ quantization_config = BitsAndBytesConfig(
77
+ load_in_4bit=True,
78
+ bnb_4bit_compute_dtype=torch.bfloat16,
79
+ use_double_quant=True, # Enable double quantization
80
+ bnb_4bit_quant_type="nf4" # Use normal float 4 for better precision
81
+ )
82
+
83
+ tokenizer = AutoTokenizer.from_pretrained(MODEL_ID)
84
+ model = AutoModelForCausalLM.from_pretrained(
85
+ MODEL_ID,
86
+ device_map="auto",
87
+ quantization_config=quantization_config,
88
+ use_flash_attention_2=True, # Enable Flash Attention 2 for better performance
89
+ torch_dtype=torch.bfloat16
90
+ )
91
+
92
+ # Create Gradio interface
93
+ gr.ChatInterface(
94
+ predict,
95
+ title=EMOJI + " " + MODEL_NAME,
96
+ description=DESCRIPTION,
97
+ examples=[
98
+ ['What are the key differences between classical and quantum computing?'],
99
+ ['Explain the concept of recursive neural networks in simple terms.'],
100
+ ['How does transfer learning work in large language models?'],
101
+ ['What are the ethical considerations in AI development?']
102
+ ],
103
+ additional_inputs_accordion=gr.Accordion(label="⚙️ Parameters", open=False),
104
+ additional_inputs=[
105
+ gr.Textbox(SYSTEM_MESSAGE, label="System prompt", visible=False), # Hidden system prompt
106
+ gr.Slider(0, 1, 0.7, label="Temperature"), # Adjusted default for Mistral
107
+ gr.Slider(0, 32768, 12000, label="Max new tokens"), # Increased for longer context
108
+ gr.Slider(1, 100, 50, label="Top K sampling"),
109
+ gr.Slider(0, 2, 1.1, label="Repetition penalty"),
110
+ gr.Slider(0, 1, 0.95, label="Top P sampling"),
111
+ ],
112
+ ).queue().launch()