Spaces:
Running
Running
File size: 9,231 Bytes
0cb60c7 67f471c 771365f 947739b 7617875 0cb60c7 c9d2489 67f471c 771365f 947739b 771365f 8d8e69e cb5dc7e b2f41cc 8d8e69e b2f41cc 947739b cb5dc7e 7617875 947739b b2f41cc 947739b b2f41cc 179691f b2f41cc 179691f b2f41cc 8d8e69e 947739b b2f41cc 947739b b2f41cc 947739b b2f41cc 8d8e69e 8e3aecb 947739b b2f41cc 7617875 b2f41cc 7617875 8d8e69e 7617875 b2f41cc 7617875 b2f41cc 179691f b2f41cc 179691f b2f41cc 179691f b2f41cc 179691f b2f41cc 179691f 8d8e69e b2f41cc 947739b b2f41cc 179691f b2f41cc 179691f 947739b 0cb60c7 830b865 0cb60c7 cb5dc7e 8d8e69e 276ed24 cb5dc7e 7617875 cb5dc7e 7617875 cb5dc7e 8d8e69e 0cb60c7 cb5dc7e 7617875 cb5dc7e 947739b 7617875 0cb60c7 9a72b36 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 |
import gradio as gr
import pandas as pd
import sweetviz as sv
import tempfile
import os
import category_encoders as ce
import umap
import matplotlib.pyplot as plt
from sklearn.preprocessing import StandardScaler
from autoviz.AutoViz_Class import AutoViz_Class
import shutil
import warnings
warnings.filterwarnings('ignore')
class DataAnalyzer:
def __init__(self):
self.temp_dir = tempfile.mkdtemp()
self.df = None
self.AV = AutoViz_Class()
def generate_sweetviz_report(self, df):
if df is None:
return "Please upload a dataset first"
self.df = df
report = sv.analyze(df)
report_path = os.path.join(self.temp_dir, "report.html")
report.show_html(report_path, open_browser=False)
with open(report_path, 'r', encoding='utf-8') as f:
html_content = f.read()
html_with_table = f"""
<table width="100%" style="border-collapse: collapse;">
<tr>
<td style="padding: 20px; border: 1px solid #ddd;">
<div style="height: 800px; overflow: auto;">
{html_content}
</div>
</td>
</tr>
</table>
"""
os.remove(report_path)
return html_with_table
def generate_autoviz_report(self, df):
if df is None:
return "Please upload a dataset first"
viz_temp_dir = os.path.join(self.temp_dir, "autoviz_output")
if os.path.exists(viz_temp_dir):
shutil.rmtree(viz_temp_dir)
os.makedirs(viz_temp_dir)
try:
# Data preprocessing
df = df.copy()
# Handle datetime columns
for col in df.columns:
try:
df[col] = pd.to_datetime(df[col], errors='ignore')
except:
pass
datetime_columns = df.select_dtypes(include=['datetime64']).columns
for col in datetime_columns:
df[f'{col}_year'] = df[col].dt.year
df[f'{col}_month'] = df[col].dt.month
df = df.drop(columns=[col])
# Try to convert string columns to numeric where possible
for col in df.select_dtypes(include=['object']).columns:
try:
df[col] = pd.to_numeric(df[col], errors='ignore')
except:
pass
# Convert remaining string columns to categorical if cardinality is low
object_columns = df.select_dtypes(include=['object']).columns
for col in object_columns:
if df[col].nunique() < 50:
df[col] = df[col].astype('category')
# Sample data if needed
if len(df) > 5000:
df = df.sample(n=5000, random_state=42)
# Print data info for debugging
print("\nDataset Info:")
print(df.info())
print("\nColumn Types:")
print(df.dtypes)
plt.close('all')
# Run AutoViz
dfte = self.AV.AutoViz(
filename='',
sep=',',
depVar='',
dfte=df,
header=0,
verbose=1,
lowess=False,
chart_format='svg',
max_rows_analyzed=5000,
max_cols_analyzed=30,
save_plot_dir=viz_temp_dir
)
# Collect visualizations
html_parts = []
if os.path.exists(viz_temp_dir):
for file in sorted(os.listdir(viz_temp_dir)):
if file.endswith('.html') or file.endswith('.svg'):
file_path = os.path.join(viz_temp_dir, file)
try:
with open(file_path, 'r', encoding='utf-8') as f:
content = f.read()
if content.strip():
html_parts.append(content)
except Exception as e:
print(f"Error reading file {file}: {str(e)}")
if not html_parts:
return f"""
<div style="padding: 20px; border: 1px solid #ddd; border-radius: 5px;">
<h3>Data Summary</h3>
<p>Total Rows: {len(df)}</p>
<p>Total Columns: {len(df.columns)}</p>
<p>Column Types:</p>
<pre>{df.dtypes.to_string()}</pre>
<hr>
<h3>No visualizations were generated</h3>
<p>This might be due to:</p>
<ul>
<li>All columns being categorical with high cardinality</li>
<li>No numeric columns for analysis</li>
<li>Data format not suitable for visualization</li>
</ul>
</div>
"""
combined_html = f"""
<div style="padding: 20px; border: 1px solid #ddd; border-radius: 5px;">
<h2 style="text-align: center;">AutoViz Analysis Report</h2>
<div style="margin: 20px;">
<h3>Dataset Summary</h3>
<p>Rows analyzed: {len(df)}</p>
<p>Columns: {len(df.columns)}</p>
<p>Column Types:</p>
<pre>{df.dtypes.to_string()}</pre>
</div>
<hr>
{'<hr>'.join(html_parts)}
</div>
"""
return combined_html
except Exception as e:
import traceback
error_message = f"""
<div style="padding: 20px; border: 1px solid red; border-radius: 5px;">
<h3>Error in AutoViz Analysis</h3>
<p>Error details: {str(e)}</p>
<p>Stack trace:</p>
<pre>{traceback.format_exc()}</pre>
<p>Dataset Info:</p>
<pre>
Rows: {len(df)}
Columns: {len(df.columns)}
Types:\n{df.dtypes.to_string()}
</pre>
</div>
"""
return error_message
finally:
if os.path.exists(viz_temp_dir):
shutil.rmtree(viz_temp_dir)
def create_interface():
analyzer = DataAnalyzer()
with gr.Blocks(theme=gr.themes.Soft()) as demo:
gr.Markdown("# Data Analysis Dashboard")
# Store the dataframe in a state variable
current_df = gr.State(None)
with gr.Tabs():
# First Tab: Data Upload & Preview
with gr.TabItem("Data Upload & Preview"):
with gr.Row():
file_input = gr.File(label="Upload CSV")
data_preview = gr.Dataframe(label="Data Preview", interactive=False)
def load_data(file):
if file is None:
return None, None
try:
df = pd.read_csv(file.name)
return df.head(), df
except Exception as e:
return None, None
file_input.change(
fn=load_data,
inputs=[file_input],
outputs=[data_preview, current_df]
)
# Second Tab: Sweetviz Analysis
with gr.TabItem("Sweetviz Analysis"):
with gr.Row():
sweetviz_button = gr.Button("Generate Sweetviz Report")
sweetviz_output = gr.HTML(label="Sweetviz Report")
def generate_sweetviz(df):
if df is None:
return "Please upload a dataset first"
return analyzer.generate_sweetviz_report(df)
sweetviz_button.click(
fn=generate_sweetviz,
inputs=[current_df],
outputs=[sweetviz_output]
)
# Third Tab: AutoViz Analysis
with gr.TabItem("AutoViz Analysis"):
with gr.Row():
autoviz_button = gr.Button("Generate AutoViz Report")
autoviz_output = gr.HTML(label="AutoViz Report")
def generate_autoviz(df):
if df is None:
return "Please upload a dataset first"
return analyzer.generate_autoviz_report(df)
autoviz_button.click(
fn=generate_autoviz,
inputs=[current_df],
outputs=[autoviz_output]
)
return demo
if __name__ == "__main__":
demo = create_interface()
demo.launch(show_error=True) |