File size: 9,231 Bytes
0cb60c7
 
 
67f471c
 
771365f
 
 
 
947739b
 
7617875
 
0cb60c7
 
c9d2489
67f471c
771365f
947739b
771365f
8d8e69e
cb5dc7e
 
 
b2f41cc
8d8e69e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b2f41cc
947739b
cb5dc7e
 
 
7617875
947739b
 
 
b2f41cc
947739b
b2f41cc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
179691f
 
 
b2f41cc
 
 
 
 
179691f
b2f41cc
 
 
8d8e69e
947739b
 
b2f41cc
 
947739b
b2f41cc
947739b
b2f41cc
8d8e69e
 
8e3aecb
947739b
b2f41cc
 
7617875
 
 
b2f41cc
7617875
 
 
 
8d8e69e
7617875
 
 
b2f41cc
7617875
b2f41cc
179691f
b2f41cc
 
 
 
 
 
179691f
 
 
b2f41cc
 
 
179691f
 
 
b2f41cc
179691f
 
 
b2f41cc
 
 
 
 
 
 
179691f
 
 
 
 
8d8e69e
b2f41cc
947739b
b2f41cc
179691f
 
 
 
b2f41cc
 
 
 
 
 
 
 
179691f
 
 
947739b
 
 
 
0cb60c7
 
 
 
830b865
0cb60c7
cb5dc7e
 
8d8e69e
276ed24
cb5dc7e
7617875
cb5dc7e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7617875
cb5dc7e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8d8e69e
0cb60c7
cb5dc7e
 
 
 
 
 
 
 
 
 
7617875
cb5dc7e
 
 
 
947739b
7617875
0cb60c7
 
 
 
9a72b36
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
import gradio as gr
import pandas as pd
import sweetviz as sv
import tempfile
import os
import category_encoders as ce
import umap
import matplotlib.pyplot as plt
from sklearn.preprocessing import StandardScaler
from autoviz.AutoViz_Class import AutoViz_Class
import shutil
import warnings
warnings.filterwarnings('ignore')

class DataAnalyzer:
    def __init__(self):
        self.temp_dir = tempfile.mkdtemp()
        self.df = None
        self.AV = AutoViz_Class()
        
    def generate_sweetviz_report(self, df):
        if df is None:
            return "Please upload a dataset first"
        
        self.df = df
        report = sv.analyze(df)
        report_path = os.path.join(self.temp_dir, "report.html")
        report.show_html(report_path, open_browser=False)
        
        with open(report_path, 'r', encoding='utf-8') as f:
            html_content = f.read()
        
        html_with_table = f"""
        <table width="100%" style="border-collapse: collapse;">
            <tr>
                <td style="padding: 20px; border: 1px solid #ddd;">
                    <div style="height: 800px; overflow: auto;">
                        {html_content}
                    </div>
                </td>
            </tr>
        </table>
        """
        
        os.remove(report_path)
        return html_with_table

    def generate_autoviz_report(self, df):
        if df is None:
            return "Please upload a dataset first"
            
        viz_temp_dir = os.path.join(self.temp_dir, "autoviz_output")
        if os.path.exists(viz_temp_dir):
            shutil.rmtree(viz_temp_dir)
        os.makedirs(viz_temp_dir)

        try:
            # Data preprocessing
            df = df.copy()
            
            # Handle datetime columns
            for col in df.columns:
                try:
                    df[col] = pd.to_datetime(df[col], errors='ignore')
                except:
                    pass
                    
            datetime_columns = df.select_dtypes(include=['datetime64']).columns
            for col in datetime_columns:
                df[f'{col}_year'] = df[col].dt.year
                df[f'{col}_month'] = df[col].dt.month
                df = df.drop(columns=[col])
            
            # Try to convert string columns to numeric where possible
            for col in df.select_dtypes(include=['object']).columns:
                try:
                    df[col] = pd.to_numeric(df[col], errors='ignore')
                except:
                    pass
            
            # Convert remaining string columns to categorical if cardinality is low
            object_columns = df.select_dtypes(include=['object']).columns
            for col in object_columns:
                if df[col].nunique() < 50:
                    df[col] = df[col].astype('category')
            
            # Sample data if needed
            if len(df) > 5000:
                df = df.sample(n=5000, random_state=42)
            
            # Print data info for debugging
            print("\nDataset Info:")
            print(df.info())
            print("\nColumn Types:")
            print(df.dtypes)
            
            plt.close('all')
            
            # Run AutoViz
            dfte = self.AV.AutoViz(
                filename='',
                sep=',',
                depVar='',
                dfte=df,
                header=0,
                verbose=1,
                lowess=False,
                chart_format='svg',
                max_rows_analyzed=5000,
                max_cols_analyzed=30,
                save_plot_dir=viz_temp_dir
            )

            # Collect visualizations
            html_parts = []
            if os.path.exists(viz_temp_dir):
                for file in sorted(os.listdir(viz_temp_dir)):
                    if file.endswith('.html') or file.endswith('.svg'):
                        file_path = os.path.join(viz_temp_dir, file)
                        try:
                            with open(file_path, 'r', encoding='utf-8') as f:
                                content = f.read()
                                if content.strip():
                                    html_parts.append(content)
                        except Exception as e:
                            print(f"Error reading file {file}: {str(e)}")

            if not html_parts:
                return f"""
                <div style="padding: 20px; border: 1px solid #ddd; border-radius: 5px;">
                    <h3>Data Summary</h3>
                    <p>Total Rows: {len(df)}</p>
                    <p>Total Columns: {len(df.columns)}</p>
                    <p>Column Types:</p>
                    <pre>{df.dtypes.to_string()}</pre>
                    <hr>
                    <h3>No visualizations were generated</h3>
                    <p>This might be due to:</p>
                    <ul>
                        <li>All columns being categorical with high cardinality</li>
                        <li>No numeric columns for analysis</li>
                        <li>Data format not suitable for visualization</li>
                    </ul>
                </div>
                """

            combined_html = f"""
            <div style="padding: 20px; border: 1px solid #ddd; border-radius: 5px;">
                <h2 style="text-align: center;">AutoViz Analysis Report</h2>
                <div style="margin: 20px;">
                    <h3>Dataset Summary</h3>
                    <p>Rows analyzed: {len(df)}</p>
                    <p>Columns: {len(df.columns)}</p>
                    <p>Column Types:</p>
                    <pre>{df.dtypes.to_string()}</pre>
                </div>
                <hr>
                {'<hr>'.join(html_parts)}
            </div>
            """
            
            return combined_html

        except Exception as e:
            import traceback
            error_message = f"""
            <div style="padding: 20px; border: 1px solid red; border-radius: 5px;">
                <h3>Error in AutoViz Analysis</h3>
                <p>Error details: {str(e)}</p>
                <p>Stack trace:</p>
                <pre>{traceback.format_exc()}</pre>
                <p>Dataset Info:</p>
                <pre>
                Rows: {len(df)}
                Columns: {len(df.columns)}
                Types:\n{df.dtypes.to_string()}
                </pre>
            </div>
            """
            return error_message
        finally:
            if os.path.exists(viz_temp_dir):
                shutil.rmtree(viz_temp_dir)

def create_interface():
    analyzer = DataAnalyzer()
    
    with gr.Blocks(theme=gr.themes.Soft()) as demo:
        gr.Markdown("# Data Analysis Dashboard")
        
        # Store the dataframe in a state variable
        current_df = gr.State(None)
        
        with gr.Tabs():
            # First Tab: Data Upload & Preview
            with gr.TabItem("Data Upload & Preview"):
                with gr.Row():
                    file_input = gr.File(label="Upload CSV")
                data_preview = gr.Dataframe(label="Data Preview", interactive=False)
                
                def load_data(file):
                    if file is None:
                        return None, None
                    try:
                        df = pd.read_csv(file.name)
                        return df.head(), df
                    except Exception as e:
                        return None, None
                
                file_input.change(
                    fn=load_data,
                    inputs=[file_input],
                    outputs=[data_preview, current_df]
                )
            
            # Second Tab: Sweetviz Analysis
            with gr.TabItem("Sweetviz Analysis"):
                with gr.Row():
                    sweetviz_button = gr.Button("Generate Sweetviz Report")
                sweetviz_output = gr.HTML(label="Sweetviz Report")
                
                def generate_sweetviz(df):
                    if df is None:
                        return "Please upload a dataset first"
                    return analyzer.generate_sweetviz_report(df)
                
                sweetviz_button.click(
                    fn=generate_sweetviz,
                    inputs=[current_df],
                    outputs=[sweetviz_output]
                )
            
            # Third Tab: AutoViz Analysis
            with gr.TabItem("AutoViz Analysis"):
                with gr.Row():
                    autoviz_button = gr.Button("Generate AutoViz Report")
                autoviz_output = gr.HTML(label="AutoViz Report")
                
                def generate_autoviz(df):
                    if df is None:
                        return "Please upload a dataset first"
                    return analyzer.generate_autoviz_report(df)
                
                autoviz_button.click(
                    fn=generate_autoviz,
                    inputs=[current_df],
                    outputs=[autoviz_output]
                )

    return demo

if __name__ == "__main__":
    demo = create_interface()
    demo.launch(show_error=True)