Spaces:
Running
Running
File size: 7,280 Bytes
0cb60c7 67f471c 771365f 947739b 0cb60c7 c9d2489 67f471c 771365f 947739b 771365f 0cb60c7 947739b 0cb60c7 9a72b36 830b865 acc4e78 276ed24 9a72b36 830b865 276ed24 0cb60c7 947739b 771365f 0cb60c7 830b865 0cb60c7 276ed24 947739b 771365f 0cb60c7 9138597 0cb60c7 947739b 0cb60c7 771365f 947739b 0cb60c7 947739b 771365f 947739b 771365f 0cb60c7 9138597 947739b 771365f 0cb60c7 9a72b36 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 |
import gradio as gr
import pandas as pd
import sweetviz as sv
import tempfile
import os
import category_encoders as ce
import umap
import matplotlib.pyplot as plt
from sklearn.preprocessing import StandardScaler
from autoviz.AutoViz_Class import AutoViz_Class
import shutil
class DataAnalyzer:
def __init__(self):
self.temp_dir = tempfile.mkdtemp()
self.df = None
self.AV = AutoViz_Class()
def generate_sweetviz_report(self, df):
self.df = df
report = sv.analyze(df)
report_path = os.path.join(self.temp_dir, "report.html")
report.show_html(report_path, open_browser=False)
with open(report_path, 'r', encoding='utf-8') as f:
html_content = f.read()
html_with_table = f"""
<table width="100%" style="border-collapse: collapse;">
<tr>
<td style="padding: 20px; border: 1px solid #ddd;">
<div style="height: 800px; overflow: auto;">
{html_content}
</div>
</td>
</tr>
</table>
"""
os.remove(report_path)
return html_with_table
def generate_autoviz_report(self, df):
"""Generate AutoViz report and return the HTML content"""
# Create a temporary directory for AutoViz output
viz_temp_dir = os.path.join(self.temp_dir, "autoviz")
if os.path.exists(viz_temp_dir):
shutil.rmtree(viz_temp_dir)
os.makedirs(viz_temp_dir)
try:
# Generate AutoViz report
dft = self.AV.AutoViz(
filename='',
sep=',',
depVar='',
dfte=df,
header=0,
verbose=0,
lowess=False,
chart_format='html',
max_rows_analyzed=150000,
save_plot_dir=viz_temp_dir
)
# Combine all HTML files into one
html_content = ""
for file in sorted(os.listdir(viz_temp_dir)):
if file.endswith('.html'):
with open(os.path.join(viz_temp_dir, file), 'r', encoding='utf-8') as f:
html_content += f.read() + "<br><hr><br>"
# Wrap the content in a scrollable div
html_with_table = f"""
<table width="100%" style="border-collapse: collapse;">
<tr>
<td style="padding: 20px; border: 1px solid #ddd;">
<div style="height: 800px; overflow: auto;">
{html_content}
</div>
</td>
</tr>
</table>
"""
return html_with_table
except Exception as e:
return f"Error generating AutoViz report: {str(e)}"
finally:
# Clean up
if os.path.exists(viz_temp_dir):
shutil.rmtree(viz_temp_dir)
def encode_and_visualize(self, column_name, encoder_type='binary'):
if self.df is None or column_name not in self.df.columns:
return None
df_subset = self.df[[column_name]].copy()
encoders = {
'binary': ce.BinaryEncoder(),
'onehot': ce.OneHotEncoder(),
'catboost': ce.CatBoostEncoder(),
'count': ce.CountEncoder()
}
encoder = encoders.get(encoder_type)
encoded_df = encoder.fit_transform(df_subset)
scaler = StandardScaler()
scaled_data = scaler.fit_transform(encoded_df)
reducer = umap.UMAP(
n_neighbors=15,
min_dist=0.1,
n_components=2,
random_state=42
)
embedding = reducer.fit_transform(scaled_data)
plt.figure(figsize=(10, 6))
scatter = plt.scatter(
embedding[:, 0],
embedding[:, 1],
c=pd.factorize(df_subset[column_name])[0],
cmap='viridis',
alpha=0.6
)
plt.colorbar(scatter)
plt.title(f'UMAP visualization of {column_name}\nusing {encoder_type} encoding')
plt.xlabel('UMAP1')
plt.ylabel('UMAP2')
buf = io.BytesIO()
plt.savefig(buf, format='png', bbox_inches='tight')
plt.close()
buf.seek(0)
return buf
def create_interface():
analyzer = DataAnalyzer()
with gr.Blocks(theme=gr.themes.Soft()) as demo:
gr.Markdown("# Data Analysis Dashboard")
with gr.Tabs():
with gr.TabItem("Sweetviz Analysis"):
file_input = gr.File(label="Upload CSV")
report_html = gr.HTML()
with gr.TabItem("AutoViz Analysis"):
autoviz_html = gr.HTML()
with gr.TabItem("Categorical Analysis"):
with gr.Row():
column_dropdown = gr.Dropdown(
label="Select Categorical Column",
choices=[],
interactive=True
)
encoder_dropdown = gr.Dropdown(
label="Select Encoder",
choices=['binary', 'onehot', 'catboost', 'count'],
value='binary',
interactive=True
)
plot_output = gr.Image(label="UMAP Visualization")
def process_file(file):
if file is None:
return None, None, gr.Dropdown(choices=[])
try:
df = pd.read_csv(file.name)
cat_columns = df.select_dtypes(include=['object', 'category']).columns.tolist()
# Generate both reports
sweetviz_report = analyzer.generate_sweetviz_report(df)
autoviz_report = analyzer.generate_autoviz_report(df)
return (
sweetviz_report,
autoviz_report,
gr.Dropdown(choices=cat_columns)
)
except Exception as e:
return f"Error: {str(e)}", None, gr.Dropdown(choices=[])
def update_plot(column, encoder_type):
if column is None:
return None
try:
return analyzer.encode_and_visualize(column, encoder_type)
except Exception as e:
return None
file_input.change(
fn=process_file,
inputs=[file_input],
outputs=[report_html, autoviz_html, column_dropdown]
)
column_dropdown.change(
fn=update_plot,
inputs=[column_dropdown, encoder_dropdown],
outputs=[plot_output]
)
encoder_dropdown.change(
fn=update_plot,
inputs=[column_dropdown, encoder_dropdown],
outputs=[plot_output]
)
return demo
if __name__ == "__main__":
demo = create_interface()
demo.launch(show_error=True) |