Spaces:
Running
Running
File size: 5,533 Bytes
0cb60c7 67f471c 771365f 947739b 7617875 0cb60c7 c9d2489 67f471c 771365f 947739b 771365f 8d8e69e 947739b 8d8e69e 7617875 947739b 8d8e69e 947739b 8d8e69e 947739b 8d8e69e 947739b 8d8e69e 7617875 8d8e69e 7617875 8d8e69e 7617875 8d8e69e 947739b 8d8e69e 947739b 0cb60c7 830b865 0cb60c7 8d8e69e 276ed24 7617875 276ed24 947739b 8d8e69e 7617875 8d8e69e 7617875 9138597 0cb60c7 7617875 0cb60c7 7617875 947739b 7617875 947739b 7617875 947739b 0cb60c7 8d8e69e 7617875 0cb60c7 9138597 7617875 771365f 7617875 0cb60c7 9a72b36 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 |
import gradio as gr
import pandas as pd
import sweetviz as sv
import tempfile
import os
import category_encoders as ce
import umap
import matplotlib.pyplot as plt
from sklearn.preprocessing import StandardScaler
from autoviz.AutoViz_Class import AutoViz_Class
import shutil
import warnings
warnings.filterwarnings('ignore')
class DataAnalyzer:
def __init__(self):
self.temp_dir = tempfile.mkdtemp()
self.df = None
self.AV = AutoViz_Class()
def generate_sweetviz_report(self, df):
self.df = df
report = sv.analyze(df)
report_path = os.path.join(self.temp_dir, "report.html")
report.show_html(report_path, open_browser=False)
with open(report_path, 'r', encoding='utf-8') as f:
html_content = f.read()
html_with_table = f"""
<table width="100%" style="border-collapse: collapse;">
<tr>
<td style="padding: 20px; border: 1px solid #ddd;">
<div style="height: 800px; overflow: auto;">
{html_content}
</div>
</td>
</tr>
</table>
"""
os.remove(report_path)
return html_with_table
def generate_autoviz_report(self, df):
"""Generate AutoViz report with proper sequence"""
viz_temp_dir = os.path.join(self.temp_dir, "autoviz_output")
if os.path.exists(viz_temp_dir):
shutil.rmtree(viz_temp_dir)
os.makedirs(viz_temp_dir)
try:
# Proper AutoViz sequence
plt.close('all') # Close any existing plots
dfte = self.AV.AutoViz(
filename='',
sep=',',
depVar='',
dfte=df, # Pass DataFrame directly
header=0,
verbose=0,
lowess=False,
chart_format='html',
max_rows_analyzed=5000,
max_cols_analyzed=30,
save_plot_dir=viz_temp_dir
)
# Collect generated HTML files
html_parts = []
if os.path.exists(viz_temp_dir):
for file in sorted(os.listdir(viz_temp_dir)):
if file.endswith('.html'):
file_path = os.path.join(viz_temp_dir, file)
try:
with open(file_path, 'r', encoding='utf-8') as f:
content = f.read()
if content.strip():
html_parts.append(content)
except Exception as e:
print(f"Error reading file {file}: {str(e)}")
if not html_parts:
return "No visualizations were generated. Please check your data."
combined_html = "<br><hr><br>".join(html_parts)
return combined_html
except Exception as e:
return f"Error in AutoViz: {str(e)}"
finally:
if os.path.exists(viz_temp_dir):
shutil.rmtree(viz_temp_dir)
def create_interface():
analyzer = DataAnalyzer()
with gr.Blocks(theme=gr.themes.Soft()) as demo:
gr.Markdown("# Data Analysis Dashboard")
# Define all outputs first
data_preview = gr.Dataframe(label="Data Preview")
report_html = gr.HTML(label="Sweetviz Report")
autoviz_html = gr.HTML(label="AutoViz Report")
column_dropdown = gr.Dropdown(
label="Select Categorical Column",
choices=[],
interactive=True
)
with gr.Tabs():
with gr.TabItem("Data Upload & Preview"):
file_input = gr.File(label="Upload CSV")
with gr.TabItem("AutoViz Analysis"):
gr.Markdown("""
### AutoViz Analysis
Automatic visualization of your dataset
""")
with gr.TabItem("Categorical Analysis"):
encoder_dropdown = gr.Dropdown(
label="Select Encoder",
choices=['binary', 'onehot', 'catboost', 'count'],
value='binary',
interactive=True
)
plot_output = gr.Image(label="UMAP Visualization")
def process_file(file):
if file is None:
return None, None, None, gr.Dropdown(choices=[])
try:
df = pd.read_csv(file.name)
preview = df.head()
sweetviz_report = analyzer.generate_sweetviz_report(df)
autoviz_report = analyzer.generate_autoviz_report(df)
cat_columns = df.select_dtypes(include=['object', 'category']).columns.tolist()
return (
preview,
sweetviz_report,
autoviz_report,
gr.Dropdown(choices=cat_columns)
)
except Exception as e:
return None, f"Error: {str(e)}", f"Error: {str(e)}", gr.Dropdown(choices=[])
file_input.change(
fn=process_file,
inputs=[file_input],
outputs=[data_preview, report_html, autoviz_html, column_dropdown]
)
return demo
if __name__ == "__main__":
demo = create_interface()
demo.launch(show_error=True) |