File size: 2,542 Bytes
0cb60c7
 
 
67f471c
 
0cb60c7
 
c9d2489
67f471c
c9d2489
0cb60c7
830b865
0cb60c7
67f471c
830b865
 
 
 
 
 
 
 
 
 
 
 
0cb60c7
 
 
 
 
830b865
0cb60c7
 
 
67f471c
0cb60c7
830b865
 
0cb60c7
9138597
0cb60c7
67f471c
0cb60c7
 
 
830b865
 
 
 
 
 
 
 
 
 
 
 
 
c9d2489
 
67f471c
0cb60c7
 
830b865
0cb60c7
 
 
9138597
67f471c
0cb60c7
 
 
 
 
 
830b865
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
import gradio as gr
import pandas as pd
import sweetviz as sv
import tempfile
import os

class DataAnalyzer:
    def __init__(self):
        self.temp_dir = tempfile.mkdtemp()
    
    def generate_sweetviz_report(self, df):
        # Create Sweetviz report
        report = sv.analyze(df)
        
        # Save to temporary file with specific name
        report_path = os.path.join(self.temp_dir, "sweetviz_report.html")
        report.show_html(report_path, open_browser=False)
        
        # Read the generated HTML
        with open(report_path, 'r', encoding='utf-8') as f:
            html_content = f.read()
            
        # Clean up the temporary file
        os.remove(report_path)
        
        return html_content

def create_interface():
    analyzer = DataAnalyzer()
    
    with gr.Blocks(theme=gr.themes.Soft()) as demo:
        gr.Markdown("# Data Analysis Dashboard")
        
        with gr.Row():
            file_input = gr.File(label="Upload CSV")
            dataset_info = gr.JSON(label="Dataset Information")
        
        # Create a larger HTML viewer for the report
        report_html = gr.HTML(label="Analysis Report", height=800)
        
        def process_file(file):
            if file is None:
                return None, None
            
            try:
                df = pd.read_csv(file.name)
                
                # Convert 'value' column to numeric if possible
                df['value'] = pd.to_numeric(df['value'], errors='coerce')
                
                info = {
                    "Rows": len(df),
                    "Columns": len(df.columns),
                    "Memory Usage (MB)": round(df.memory_usage(deep=True).sum() / 1024**2, 2),
                    "Missing Values": df.isnull().sum().sum(),
                    "Column Types": df.dtypes.astype(str).to_dict()
                }
                
                # Generate Sweetviz report
                report = analyzer.generate_sweetviz_report(df)
                
                return info, report
                
            except Exception as e:
                return {"error": str(e)}, f"Error generating report: {str(e)}"
        
        file_input.change(
            fn=process_file,
            inputs=[file_input],
            outputs=[dataset_info, report_html]
        )
    
    return demo

if __name__ == "__main__":
    demo = create_interface()
    demo.launch(
        height=1000,  # Increased height for better report visibility
        show_error=True
    )