File size: 5,368 Bytes
0cb60c7
 
 
67f471c
 
771365f
 
 
 
 
 
 
 
0cb60c7
 
c9d2489
67f471c
771365f
 
0cb60c7
771365f
0cb60c7
9a72b36
830b865
 
 
 
acc4e78
276ed24
 
 
 
 
 
 
 
 
 
9a72b36
 
830b865
276ed24
0cb60c7
771365f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0cb60c7
 
 
 
830b865
0cb60c7
276ed24
 
 
 
 
771365f
 
 
 
 
 
 
 
 
 
 
 
 
 
0cb60c7
9138597
0cb60c7
771365f
0cb60c7
 
 
771365f
 
 
0cb60c7
771365f
 
 
 
 
 
 
 
 
 
0cb60c7
 
 
9138597
771365f
 
 
 
 
 
 
 
 
 
 
 
 
0cb60c7
 
 
 
 
 
9a72b36
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
import gradio as gr
import pandas as pd
import sweetviz as sv
import tempfile
import os
import category_encoders as ce
import umap
import matplotlib.pyplot as plt
from sklearn.preprocessing import StandardScaler
import seaborn as sns
import numpy as np
import io
import base64

class DataAnalyzer:
    def __init__(self):
        self.temp_dir = tempfile.mkdtemp()
        self.df = None
        
    def generate_sweetviz_report(self, df):
        self.df = df  # Store DataFrame for other analyses
        report = sv.analyze(df)
        report_path = os.path.join(self.temp_dir, "report.html")
        report.show_html(report_path, open_browser=False)
        
        with open(report_path, 'r', encoding='utf-8') as f:
            html_content = f.read()
        
        html_with_table = f"""
        <table width="100%" style="border-collapse: collapse;">
            <tr>
                <td style="padding: 20px; border: 1px solid #ddd;">
                    <div style="height: 800px; overflow: auto;">
                        {html_content}
                    </div>
                </td>
            </tr>
        </table>
        """
        
        os.remove(report_path)
        return html_with_table

    def encode_and_visualize(self, column_name, encoder_type='binary'):
        if self.df is None or column_name not in self.df.columns:
            return None
        
        # Create DataFrame with only the selected column
        df_subset = self.df[[column_name]].copy()
        
        # Select encoder
        encoders = {
            'binary': ce.BinaryEncoder(),
            'onehot': ce.OneHotEncoder(),
            'catboost': ce.CatBoostEncoder(),
            'count': ce.CountEncoder()
        }
        
        encoder = encoders.get(encoder_type)
        
        # Encode data
        encoded_df = encoder.fit_transform(df_subset)
        
        # Scale the encoded features
        scaler = StandardScaler()
        scaled_data = scaler.fit_transform(encoded_df)
        
        # Apply UMAP
        reducer = umap.UMAP(
            n_neighbors=15,
            min_dist=0.1,
            n_components=2,
            random_state=42
        )
        
        embedding = reducer.fit_transform(scaled_data)
        
        # Create visualization
        plt.figure(figsize=(10, 6))
        scatter = plt.scatter(
            embedding[:, 0],
            embedding[:, 1],
            c=pd.factorize(df_subset[column_name])[0],
            cmap='viridis',
            alpha=0.6
        )
        
        plt.colorbar(scatter)
        plt.title(f'UMAP visualization of {column_name}\nusing {encoder_type} encoding')
        plt.xlabel('UMAP1')
        plt.ylabel('UMAP2')
        
        # Save plot to bytes
        buf = io.BytesIO()
        plt.savefig(buf, format='png', bbox_inches='tight')
        plt.close()
        buf.seek(0)
        
        return buf

def create_interface():
    analyzer = DataAnalyzer()
    
    with gr.Blocks(theme=gr.themes.Soft()) as demo:
        gr.Markdown("# Data Analysis Dashboard")
        
        with gr.Tabs():
            with gr.TabItem("Sweetviz Analysis"):
                file_input = gr.File(label="Upload CSV")
                report_html = gr.HTML()
            
            with gr.TabItem("Categorical Analysis"):
                with gr.Row():
                    column_dropdown = gr.Dropdown(
                        label="Select Categorical Column",
                        choices=[],
                        interactive=True
                    )
                    encoder_dropdown = gr.Dropdown(
                        label="Select Encoder",
                        choices=['binary', 'onehot', 'catboost', 'count'],
                        value='binary',
                        interactive=True
                    )
                plot_output = gr.Image(label="UMAP Visualization")
        
        def process_file(file):
            if file is None:
                return None, gr.Dropdown(choices=[])
            
            try:
                df = pd.read_csv(file.name)
                # Get categorical columns
                cat_columns = df.select_dtypes(include=['object', 'category']).columns.tolist()
                return analyzer.generate_sweetviz_report(df), gr.Dropdown(choices=cat_columns)
            except Exception as e:
                return f"Error generating report: {str(e)}", gr.Dropdown(choices=[])
        
        def update_plot(column, encoder_type):
            if column is None:
                return None
            try:
                plot_bytes = analyzer.encode_and_visualize(column, encoder_type)
                return plot_bytes
            except Exception as e:
                return None
        
        file_input.change(
            fn=process_file,
            inputs=[file_input],
            outputs=[report_html, column_dropdown]
        )
        
        column_dropdown.change(
            fn=update_plot,
            inputs=[column_dropdown, encoder_dropdown],
            outputs=[plot_output]
        )
        
        encoder_dropdown.change(
            fn=update_plot,
            inputs=[column_dropdown, encoder_dropdown],
            outputs=[plot_output]
        )
    
    return demo

if __name__ == "__main__":
    demo = create_interface()
    demo.launch(show_error=True)