Spaces:
Running
Running
File size: 6,058 Bytes
0cb60c7 67f471c 771365f 947739b 7617875 0cb60c7 c9d2489 67f471c 771365f 947739b 771365f 947739b 7617875 947739b 7617875 947739b 7617875 947739b 7617875 947739b 7617875 947739b 7617875 947739b 7617875 947739b 7617875 947739b 7617875 771365f 0cb60c7 830b865 0cb60c7 276ed24 7617875 276ed24 7617875 276ed24 947739b 771365f 7617875 9138597 0cb60c7 7617875 0cb60c7 947739b 7617875 947739b 7617875 947739b 7617875 947739b 0cb60c7 7617875 0cb60c7 9138597 7617875 771365f 7617875 0cb60c7 9a72b36 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 |
import gradio as gr
import pandas as pd
import sweetviz as sv
import tempfile
import os
import category_encoders as ce
import umap
import matplotlib.pyplot as plt
from sklearn.preprocessing import StandardScaler
from autoviz.AutoViz_Class import AutoViz_Class
import shutil
import warnings
warnings.filterwarnings('ignore')
class DataAnalyzer:
def __init__(self):
self.temp_dir = tempfile.mkdtemp()
self.df = None
self.AV = AutoViz_Class()
def generate_autoviz_report(self, df):
"""Generate AutoViz report with proper error handling"""
viz_temp_dir = os.path.join(self.temp_dir, "autoviz_output")
if os.path.exists(viz_temp_dir):
shutil.rmtree(viz_temp_dir)
os.makedirs(viz_temp_dir)
try:
# Configure AutoViz with safe defaults
dft = self.AV.AutoViz(
filename='',
sep=',',
depVar='',
dfte=df,
header=0,
verbose=0,
lowess=False,
chart_format='html',
max_rows_analyzed=5000, # Limit rows for better performance
max_cols_analyzed=30, # Limit columns
save_plot_dir=viz_temp_dir,
ignore_warnings=True
)
# Collect all generated HTML files
html_parts = []
if os.path.exists(viz_temp_dir):
for file in sorted(os.listdir(viz_temp_dir)):
if file.endswith('.html'):
file_path = os.path.join(viz_temp_dir, file)
try:
with open(file_path, 'r', encoding='utf-8') as f:
content = f.read()
if content.strip(): # Only add non-empty content
html_parts.append(content)
except Exception as e:
print(f"Error reading file {file}: {str(e)}")
if not html_parts:
return "No visualizations were generated. The dataset might be too small or contain invalid data."
# Combine all HTML content
combined_html = "<br><hr><br>".join(html_parts)
# Create a container with proper styling
html_with_container = f"""
<div style="width: 100%; max-width: 1200px; margin: 0 auto;">
<div style="height: 800px; overflow-y: auto; padding: 20px; border: 1px solid #ddd; border-radius: 5px;">
<h2 style="text-align: center; margin-bottom: 20px;">AutoViz Analysis Report</h2>
{combined_html}
</div>
</div>
"""
return html_with_container
except Exception as e:
error_message = f"""
<div style="color: red; padding: 20px; border: 1px solid red; border-radius: 5px; margin: 20px;">
<h3>Error Generating AutoViz Report</h3>
<p>Error details: {str(e)}</p>
<p>Suggestions:</p>
<ul>
<li>Check if your dataset has valid numerical or categorical columns</li>
<li>Ensure your dataset has at least 2 columns and 10 rows</li>
<li>Remove any corrupted or invalid data</li>
</ul>
</div>
"""
return error_message
finally:
# Cleanup
if os.path.exists(viz_temp_dir):
shutil.rmtree(viz_temp_dir)
# ... (rest of the DataAnalyzer class remains the same)
def create_interface():
analyzer = DataAnalyzer()
with gr.Blocks(theme=gr.themes.Soft()) as demo:
gr.Markdown("# Data Analysis Dashboard")
with gr.Tabs():
with gr.TabItem("Data Upload & Preview"):
file_input = gr.File(label="Upload CSV")
data_preview = gr.Dataframe(label="Data Preview")
with gr.TabItem("AutoViz Analysis"):
with gr.Row():
autoviz_html = gr.HTML()
gr.Markdown("""
### AutoViz Analysis Info
- Generates automatic visualizations
- Analyzes relationships between variables
- Creates distribution plots
- Shows correlation matrices
- Identifies patterns and outliers
""")
# ... (other tabs remain the same)
def process_file(file):
if file is None:
return None, None, None, gr.Dropdown(choices=[])
try:
df = pd.read_csv(file.name)
# Preview first few rows
preview = df.head()
# Generate reports
sweetviz_report = analyzer.generate_sweetviz_report(df)
autoviz_report = analyzer.generate_autoviz_report(df)
# Get categorical columns
cat_columns = df.select_dtypes(include=['object', 'category']).columns.tolist()
return (
preview,
sweetviz_report,
autoviz_report,
gr.Dropdown(choices=cat_columns)
)
except Exception as e:
error_message = f"Error processing file: {str(e)}"
return None, error_message, error_message, gr.Dropdown(choices=[])
# Update file input handler
file_input.change(
fn=process_file,
inputs=[file_input],
outputs=[data_preview, report_html, autoviz_html, column_dropdown]
)
# ... (rest of the interface remains the same)
return demo
if __name__ == "__main__":
demo = create_interface()
demo.launch(show_error=True) |