File size: 6,058 Bytes
0cb60c7
 
 
67f471c
 
771365f
 
 
 
947739b
 
7617875
 
0cb60c7
 
c9d2489
67f471c
771365f
947739b
771365f
947739b
7617875
 
947739b
 
 
 
 
7617875
947739b
 
 
 
 
 
 
 
 
7617875
 
 
 
947739b
 
7617875
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
947739b
7617875
 
 
 
 
 
 
 
947739b
 
7617875
947739b
 
7617875
 
 
 
 
 
 
 
 
 
 
 
 
947739b
7617875
947739b
 
 
7617875
771365f
0cb60c7
 
 
 
830b865
0cb60c7
276ed24
7617875
276ed24
7617875
276ed24
947739b
771365f
7617875
 
 
 
 
 
 
 
 
 
 
 
9138597
0cb60c7
7617875
0cb60c7
 
 
947739b
7617875
 
 
 
947739b
 
 
7617875
 
 
947739b
7617875
947739b
 
 
 
0cb60c7
7617875
 
 
 
0cb60c7
 
9138597
7617875
771365f
 
7617875
 
0cb60c7
 
 
 
9a72b36
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
import gradio as gr
import pandas as pd
import sweetviz as sv
import tempfile
import os
import category_encoders as ce
import umap
import matplotlib.pyplot as plt
from sklearn.preprocessing import StandardScaler
from autoviz.AutoViz_Class import AutoViz_Class
import shutil
import warnings
warnings.filterwarnings('ignore')

class DataAnalyzer:
    def __init__(self):
        self.temp_dir = tempfile.mkdtemp()
        self.df = None
        self.AV = AutoViz_Class()
        
    def generate_autoviz_report(self, df):
        """Generate AutoViz report with proper error handling"""
        viz_temp_dir = os.path.join(self.temp_dir, "autoviz_output")
        if os.path.exists(viz_temp_dir):
            shutil.rmtree(viz_temp_dir)
        os.makedirs(viz_temp_dir)

        try:
            # Configure AutoViz with safe defaults
            dft = self.AV.AutoViz(
                filename='',
                sep=',',
                depVar='',
                dfte=df,
                header=0,
                verbose=0,
                lowess=False,
                chart_format='html',
                max_rows_analyzed=5000,  # Limit rows for better performance
                max_cols_analyzed=30,    # Limit columns
                save_plot_dir=viz_temp_dir,
                ignore_warnings=True
            )

            # Collect all generated HTML files
            html_parts = []
            if os.path.exists(viz_temp_dir):
                for file in sorted(os.listdir(viz_temp_dir)):
                    if file.endswith('.html'):
                        file_path = os.path.join(viz_temp_dir, file)
                        try:
                            with open(file_path, 'r', encoding='utf-8') as f:
                                content = f.read()
                                if content.strip():  # Only add non-empty content
                                    html_parts.append(content)
                        except Exception as e:
                            print(f"Error reading file {file}: {str(e)}")

            if not html_parts:
                return "No visualizations were generated. The dataset might be too small or contain invalid data."

            # Combine all HTML content
            combined_html = "<br><hr><br>".join(html_parts)

            # Create a container with proper styling
            html_with_container = f"""
            <div style="width: 100%; max-width: 1200px; margin: 0 auto;">
                <div style="height: 800px; overflow-y: auto; padding: 20px; border: 1px solid #ddd; border-radius: 5px;">
                    <h2 style="text-align: center; margin-bottom: 20px;">AutoViz Analysis Report</h2>
                    {combined_html}
                </div>
            </div>
            """

            return html_with_container

        except Exception as e:
            error_message = f"""
            <div style="color: red; padding: 20px; border: 1px solid red; border-radius: 5px; margin: 20px;">
                <h3>Error Generating AutoViz Report</h3>
                <p>Error details: {str(e)}</p>
                <p>Suggestions:</p>
                <ul>
                    <li>Check if your dataset has valid numerical or categorical columns</li>
                    <li>Ensure your dataset has at least 2 columns and 10 rows</li>
                    <li>Remove any corrupted or invalid data</li>
                </ul>
            </div>
            """
            return error_message
        finally:
            # Cleanup
            if os.path.exists(viz_temp_dir):
                shutil.rmtree(viz_temp_dir)

    # ... (rest of the DataAnalyzer class remains the same)

def create_interface():
    analyzer = DataAnalyzer()
    
    with gr.Blocks(theme=gr.themes.Soft()) as demo:
        gr.Markdown("# Data Analysis Dashboard")
        
        with gr.Tabs():
            with gr.TabItem("Data Upload & Preview"):
                file_input = gr.File(label="Upload CSV")
                data_preview = gr.Dataframe(label="Data Preview")
            
            with gr.TabItem("AutoViz Analysis"):
                with gr.Row():
                    autoviz_html = gr.HTML()
                    gr.Markdown("""
                    ### AutoViz Analysis Info
                    - Generates automatic visualizations
                    - Analyzes relationships between variables
                    - Creates distribution plots
                    - Shows correlation matrices
                    - Identifies patterns and outliers
                    """)
            
            # ... (other tabs remain the same)

        def process_file(file):
            if file is None:
                return None, None, None, gr.Dropdown(choices=[])
            
            try:
                df = pd.read_csv(file.name)
                
                # Preview first few rows
                preview = df.head()
                
                # Generate reports
                sweetviz_report = analyzer.generate_sweetviz_report(df)
                autoviz_report = analyzer.generate_autoviz_report(df)
                
                # Get categorical columns
                cat_columns = df.select_dtypes(include=['object', 'category']).columns.tolist()
                
                return (
                    preview,
                    sweetviz_report,
                    autoviz_report,
                    gr.Dropdown(choices=cat_columns)
                )
            except Exception as e:
                error_message = f"Error processing file: {str(e)}"
                return None, error_message, error_message, gr.Dropdown(choices=[])

        # Update file input handler
        file_input.change(
            fn=process_file,
            inputs=[file_input],
            outputs=[data_preview, report_html, autoviz_html, column_dropdown]
        )
        
        # ... (rest of the interface remains the same)

    return demo

if __name__ == "__main__":
    demo = create_interface()
    demo.launch(show_error=True)