File size: 8,157 Bytes
0cb60c7
 
 
67f471c
 
771365f
 
 
 
947739b
 
7617875
 
0cb60c7
 
c9d2489
67f471c
771365f
947739b
771365f
8d8e69e
cb5dc7e
 
 
8d8e69e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
179691f
947739b
cb5dc7e
 
 
7617875
947739b
 
 
179691f
947739b
179691f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8d8e69e
947739b
 
 
cb5dc7e
947739b
179691f
947739b
 
8d8e69e
 
179691f
 
 
 
947739b
179691f
 
7617875
 
 
 
 
 
 
 
8d8e69e
7617875
 
 
179691f
7617875
179691f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8d8e69e
179691f
947739b
179691f
 
 
 
 
 
 
 
 
 
 
 
 
 
947739b
 
 
 
0cb60c7
 
 
 
830b865
0cb60c7
cb5dc7e
 
8d8e69e
276ed24
cb5dc7e
7617875
cb5dc7e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7617875
cb5dc7e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8d8e69e
0cb60c7
cb5dc7e
 
 
 
 
 
 
 
 
 
7617875
cb5dc7e
 
 
 
947739b
7617875
0cb60c7
 
 
 
9a72b36
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
import gradio as gr
import pandas as pd
import sweetviz as sv
import tempfile
import os
import category_encoders as ce
import umap
import matplotlib.pyplot as plt
from sklearn.preprocessing import StandardScaler
from autoviz.AutoViz_Class import AutoViz_Class
import shutil
import warnings
warnings.filterwarnings('ignore')

class DataAnalyzer:
    def __init__(self):
        self.temp_dir = tempfile.mkdtemp()
        self.df = None
        self.AV = AutoViz_Class()
        
    def generate_sweetviz_report(self, df):
        if df is None:
            return "Please upload a dataset first"
        
        report = sv.analyze(df)
        report_path = os.path.join(self.temp_dir, "report.html")
        report.show_html(report_path, open_browser=False)
        
        with open(report_path, 'r', encoding='utf-8') as f:
            html_content = f.read()
        
        html_with_table = f"""
        <table width="100%" style="border-collapse: collapse;">
            <tr>
                <td style="padding: 20px; border: 1px solid #ddd;">
                    <div style="height: 800px; overflow: auto;">
                        {html_content}
                    </div>
                </td>
            </tr>
        </table>
        """
        
        os.remove(report_path)
        return html_with_table
    
    def generate_autoviz_report(self, df):
        if df is None:
            return "Please upload a dataset first"
            
        viz_temp_dir = os.path.join(self.temp_dir, "autoviz_output")
        if os.path.exists(viz_temp_dir):
            shutil.rmtree(viz_temp_dir)
        os.makedirs(viz_temp_dir)
    
        try:
            # Sample data if it's too large
            if len(df) > 5000:
                df = df.sample(n=5000, random_state=42)
            
            # Ensure all columns are properly formatted
            df = df.copy()
            # Convert numeric columns that might be stored as strings
            for col in df.columns:
                if df[col].dtype == 'object':
                    try:
                        df[col] = pd.to_numeric(df[col], errors='ignore')
                    except:
                        pass
    
            plt.close('all')  # Close any existing plots
            
            # Configure AutoViz with more specific parameters
            dfte = self.AV.AutoViz(
                filename='',
                sep=',',
                depVar='',
                dfte=df,
                header=0,
                verbose=1,  # Set to 1 to see progress
                lowess=False,
                chart_format='html',
                max_rows_analyzed=5000,
                max_cols_analyzed=30,
                save_plot_dir=viz_temp_dir,
                ignore_warnings=True,
                sampling=True,  # Enable sampling
                sample_size=5000
            )
    
            # Collect and combine HTML files
            html_parts = []
            if os.path.exists(viz_temp_dir):
                for file in sorted(os.listdir(viz_temp_dir)):
                    if file.endswith('.html'):
                        file_path = os.path.join(viz_temp_dir, file)
                        try:
                            with open(file_path, 'r', encoding='utf-8') as f:
                                content = f.read()
                                if content.strip():
                                    html_parts.append(content)
                        except Exception as e:
                            print(f"Error reading file {file}: {str(e)}")
    
            if not html_parts:
                return """
                <div style="padding: 20px; border: 1px solid #ddd; border-radius: 5px;">
                    <h3>No visualizations were generated</h3>
                    <p>This might be due to:</p>
                    <ul>
                        <li>Data format issues</li>
                        <li>Too few unique values in columns</li>
                        <li>All categorical data with high cardinality</li>
                    </ul>
                    <p>Try with a different dataset or check your data formatting.</p>
                </div>
                """
    
            # Combine all HTML content with proper styling
            combined_html = f"""
            <div style="padding: 20px; border: 1px solid #ddd; border-radius: 5px;">
                <h2 style="text-align: center;">AutoViz Analysis Report</h2>
                <p style="text-align: center;">Analysis of {len(df)} rows and {len(df.columns)} columns</p>
                <hr>
                {'<hr>'.join(html_parts)}
            </div>
            """
            
            return combined_html
    
        except Exception as e:
            error_message = f"""
            <div style="padding: 20px; border: 1px solid red; border-radius: 5px;">
                <h3>Error in AutoViz Analysis</h3>
                <p>Error details: {str(e)}</p>
                <p>Troubleshooting steps:</p>
                <ul>
                    <li>Check if your data contains valid numerical or categorical values</li>
                    <li>Ensure there are no completely empty columns</li>
                    <li>Try with a smaller dataset</li>
                    <li>Check for any special characters in column names</li>
                </ul>
            </div>
            """
            return error_message
        finally:
            if os.path.exists(viz_temp_dir):
                shutil.rmtree(viz_temp_dir)

def create_interface():
    analyzer = DataAnalyzer()
    
    with gr.Blocks(theme=gr.themes.Soft()) as demo:
        gr.Markdown("# Data Analysis Dashboard")
        
        # Store the dataframe in a state variable
        current_df = gr.State(None)
        
        with gr.Tabs():
            # First Tab: Data Upload & Preview
            with gr.TabItem("Data Upload & Preview"):
                with gr.Row():
                    file_input = gr.File(label="Upload CSV")
                data_preview = gr.Dataframe(label="Data Preview", interactive=False)
                
                def load_data(file):
                    if file is None:
                        return None, None
                    try:
                        df = pd.read_csv(file.name)
                        return df.head(), df
                    except Exception as e:
                        return None, None
                
                file_input.change(
                    fn=load_data,
                    inputs=[file_input],
                    outputs=[data_preview, current_df]
                )
            
            # Second Tab: Sweetviz Analysis
            with gr.TabItem("Sweetviz Analysis"):
                with gr.Row():
                    sweetviz_button = gr.Button("Generate Sweetviz Report")
                sweetviz_output = gr.HTML(label="Sweetviz Report")
                
                def generate_sweetviz(df):
                    if df is None:
                        return "Please upload a dataset first"
                    return analyzer.generate_sweetviz_report(df)
                
                sweetviz_button.click(
                    fn=generate_sweetviz,
                    inputs=[current_df],
                    outputs=[sweetviz_output]
                )
            
            # Third Tab: AutoViz Analysis
            with gr.TabItem("AutoViz Analysis"):
                with gr.Row():
                    autoviz_button = gr.Button("Generate AutoViz Report")
                autoviz_output = gr.HTML(label="AutoViz Report")
                
                def generate_autoviz(df):
                    if df is None:
                        return "Please upload a dataset first"
                    return analyzer.generate_autoviz_report(df)
                
                autoviz_button.click(
                    fn=generate_autoviz,
                    inputs=[current_df],
                    outputs=[autoviz_output]
                )

    return demo

if __name__ == "__main__":
    demo = create_interface()
    demo.launch(show_error=True)