Spaces:
Build error
Build error
Fix bug and clean
Browse files
app.py
CHANGED
|
@@ -1,5 +1,4 @@
|
|
| 1 |
import streamlit as st
|
| 2 |
-
|
| 3 |
import PIL
|
| 4 |
import cv2
|
| 5 |
import numpy as np
|
|
@@ -9,7 +8,6 @@ import torch
|
|
| 9 |
# import json
|
| 10 |
from collections import OrderedDict, defaultdict
|
| 11 |
import xml.etree.ElementTree as ET
|
| 12 |
-
|
| 13 |
from paddleocr import PaddleOCR
|
| 14 |
import pytesseract
|
| 15 |
from pytesseract import Output
|
|
@@ -29,13 +27,13 @@ structure_class_names = [
|
|
| 29 |
]
|
| 30 |
structure_class_map = {k: v for v, k in enumerate(structure_class_names)}
|
| 31 |
structure_class_thresholds = {
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
}
|
| 40 |
|
| 41 |
|
|
@@ -150,7 +148,7 @@ def convert_stucture(page_tokens, pil_img, structure_result):
|
|
| 150 |
try:
|
| 151 |
table_bbox = list(table_class_objects[0]['bbox'])
|
| 152 |
except:
|
| 153 |
-
table_bbox = (0,0,1000,1000)
|
| 154 |
# print('table_class_objects:', table_class_objects)
|
| 155 |
# print('table_bbox:', table_bbox)
|
| 156 |
|
|
@@ -186,17 +184,17 @@ def visualize_structure(pil_img, structure_result):
|
|
| 186 |
min_y = result[1]
|
| 187 |
w = result[2]
|
| 188 |
h = result[3]
|
| 189 |
-
|
| 190 |
x1 = int((min_x - w / 2) * width)
|
| 191 |
y1 = int((min_y - h / 2) * height)
|
| 192 |
x2 = int((min_x + w / 2) * width)
|
| 193 |
y2 = int((min_y + h / 2) * height)
|
| 194 |
# print(x1, y1, x2, y2)
|
| 195 |
-
|
| 196 |
if score >= structure_class_thresholds[structure_class_names[class_id]]:
|
| 197 |
cv2.rectangle(image, (x1, y1), (x2, y2), color=(0, 0, 255))
|
| 198 |
#cv2.putText(image, str(i)+'-'+str(class_id), (x1-10, y1), cv2.FONT_HERSHEY_SIMPLEX, fontScale=1, color=(0,0,255))
|
| 199 |
-
|
| 200 |
return cv_to_PIL(image)
|
| 201 |
|
| 202 |
|
|
@@ -281,12 +279,12 @@ def cells_to_csv(cells):
|
|
| 281 |
else:
|
| 282 |
max_header_row = -1
|
| 283 |
|
| 284 |
-
table_array = np.empty([num_rows, num_columns], dtype=
|
| 285 |
if len(cells) > 0:
|
| 286 |
for cell in cells:
|
| 287 |
for row_num in cell['row_nums']:
|
| 288 |
for column_num in cell['column_nums']:
|
| 289 |
-
table_array[row_num, column_num] = cell[
|
| 290 |
|
| 291 |
header = table_array[:max_header_row+1,:]
|
| 292 |
flattened_header = []
|
|
@@ -301,7 +299,7 @@ def cells_to_html(cells):
|
|
| 301 |
cells = sorted(cells, key=lambda k: min(k['column_nums']))
|
| 302 |
cells = sorted(cells, key=lambda k: min(k['row_nums']))
|
| 303 |
|
| 304 |
-
table = ET.Element(
|
| 305 |
current_row = -1
|
| 306 |
|
| 307 |
for cell in cells:
|
|
@@ -317,15 +315,15 @@ def cells_to_html(cells):
|
|
| 317 |
if this_row > current_row:
|
| 318 |
current_row = this_row
|
| 319 |
if cell['header']:
|
| 320 |
-
cell_tag =
|
| 321 |
-
row = ET.SubElement(table,
|
| 322 |
else:
|
| 323 |
-
cell_tag =
|
| 324 |
-
row = ET.SubElement(table,
|
| 325 |
tcell = ET.SubElement(row, cell_tag, attrib=attrib)
|
| 326 |
tcell.text = cell['cell_text']
|
| 327 |
|
| 328 |
-
return str(ET.tostring(table, encoding=
|
| 329 |
|
| 330 |
|
| 331 |
# def cells_to_html(cells):
|
|
@@ -342,11 +340,11 @@ def cells_to_html(cells):
|
|
| 342 |
# for cell in r_cells:
|
| 343 |
# rowspan = cell['row_nums'][-1] - cell['row_nums'][0] + 1
|
| 344 |
# colspan = cell['column_nums'][-1] - cell['column_nums'][0] + 1
|
| 345 |
-
# r_html += f'<td rowspan=
|
| 346 |
# html_code += f'<tr>{r_html}</tr>'
|
| 347 |
# html_code = '''<html>
|
| 348 |
# <head>
|
| 349 |
-
# <meta charset=
|
| 350 |
# <style>
|
| 351 |
# table, th, td {
|
| 352 |
# border: 1px solid black;
|
|
@@ -355,7 +353,7 @@ def cells_to_html(cells):
|
|
| 355 |
# </style>
|
| 356 |
# </head>
|
| 357 |
# <body>
|
| 358 |
-
# <table frame=
|
| 359 |
# %s
|
| 360 |
# </table>
|
| 361 |
# </body>
|
|
@@ -367,22 +365,22 @@ def cells_to_html(cells):
|
|
| 367 |
|
| 368 |
def main():
|
| 369 |
|
| 370 |
-
st.set_page_config(layout=
|
| 371 |
-
st.title(
|
| 372 |
st.write('\n')
|
| 373 |
|
| 374 |
cols = st.columns((1, 1))
|
| 375 |
-
cols[0].subheader(
|
| 376 |
-
cols[1].subheader(
|
| 377 |
|
| 378 |
-
st.sidebar.title(
|
| 379 |
st.set_option('deprecation.showfileUploaderEncoding', False)
|
| 380 |
-
filename = st.sidebar.file_uploader(
|
| 381 |
|
| 382 |
-
if st.sidebar.button(
|
| 383 |
|
| 384 |
if filename is None:
|
| 385 |
-
st.sidebar.write(
|
| 386 |
|
| 387 |
else:
|
| 388 |
print(filename)
|
|
@@ -394,31 +392,31 @@ def main():
|
|
| 394 |
cols[1].image(vis_det_img)
|
| 395 |
|
| 396 |
str_cols = st.columns((len(crop_images), ) * 5)
|
| 397 |
-
str_cols[0].subheader(
|
| 398 |
-
str_cols[1].subheader(
|
| 399 |
-
str_cols[2].subheader(
|
| 400 |
-
str_cols[3].subheader(
|
| 401 |
-
str_cols[4].subheader(
|
| 402 |
|
| 403 |
-
for img in crop_images:
|
| 404 |
ocr_result = ocr(img)
|
| 405 |
structure_result = table_structure(img)
|
| 406 |
table_structures, cells, confidence_score = convert_stucture(ocr_result, img, structure_result)
|
| 407 |
cells = extract_text_from_cells(cells)
|
| 408 |
html_result = cells_to_html(cells)
|
| 409 |
df, csv_result = cells_to_csv(cells)
|
| 410 |
-
print(df)
|
| 411 |
|
| 412 |
vis_ocr_img = visualize_ocr(img, ocr_result)
|
| 413 |
vis_str_img = visualize_structure(img, structure_result)
|
| 414 |
vis_cells_img = visualize_cells(img, cells)
|
| 415 |
-
|
| 416 |
str_cols[0].image(img)
|
| 417 |
str_cols[1].image(vis_ocr_img)
|
| 418 |
str_cols[2].image(vis_str_img)
|
| 419 |
str_cols[3].image(vis_cells_img)
|
| 420 |
#str_cols[4].dataframe(df)
|
| 421 |
-
str_cols[4].download_button(
|
| 422 |
|
| 423 |
st.markdown(html_result, unsafe_allow_html=True)
|
| 424 |
|
|
|
|
| 1 |
import streamlit as st
|
|
|
|
| 2 |
import PIL
|
| 3 |
import cv2
|
| 4 |
import numpy as np
|
|
|
|
| 8 |
# import json
|
| 9 |
from collections import OrderedDict, defaultdict
|
| 10 |
import xml.etree.ElementTree as ET
|
|
|
|
| 11 |
from paddleocr import PaddleOCR
|
| 12 |
import pytesseract
|
| 13 |
from pytesseract import Output
|
|
|
|
| 27 |
]
|
| 28 |
structure_class_map = {k: v for v, k in enumerate(structure_class_names)}
|
| 29 |
structure_class_thresholds = {
|
| 30 |
+
'table': 0.5,
|
| 31 |
+
'table column': 0.5,
|
| 32 |
+
'table row': 0.5,
|
| 33 |
+
'table column header': 0.25,
|
| 34 |
+
'table projected row header': 0.25,
|
| 35 |
+
'table spanning cell': 0.25,
|
| 36 |
+
'no object': 10
|
| 37 |
}
|
| 38 |
|
| 39 |
|
|
|
|
| 148 |
try:
|
| 149 |
table_bbox = list(table_class_objects[0]['bbox'])
|
| 150 |
except:
|
| 151 |
+
table_bbox = (0, 0, 1000, 1000)
|
| 152 |
# print('table_class_objects:', table_class_objects)
|
| 153 |
# print('table_bbox:', table_bbox)
|
| 154 |
|
|
|
|
| 184 |
min_y = result[1]
|
| 185 |
w = result[2]
|
| 186 |
h = result[3]
|
| 187 |
+
|
| 188 |
x1 = int((min_x - w / 2) * width)
|
| 189 |
y1 = int((min_y - h / 2) * height)
|
| 190 |
x2 = int((min_x + w / 2) * width)
|
| 191 |
y2 = int((min_y + h / 2) * height)
|
| 192 |
# print(x1, y1, x2, y2)
|
| 193 |
+
|
| 194 |
if score >= structure_class_thresholds[structure_class_names[class_id]]:
|
| 195 |
cv2.rectangle(image, (x1, y1), (x2, y2), color=(0, 0, 255))
|
| 196 |
#cv2.putText(image, str(i)+'-'+str(class_id), (x1-10, y1), cv2.FONT_HERSHEY_SIMPLEX, fontScale=1, color=(0,0,255))
|
| 197 |
+
|
| 198 |
return cv_to_PIL(image)
|
| 199 |
|
| 200 |
|
|
|
|
| 279 |
else:
|
| 280 |
max_header_row = -1
|
| 281 |
|
| 282 |
+
table_array = np.empty([num_rows, num_columns], dtype='object')
|
| 283 |
if len(cells) > 0:
|
| 284 |
for cell in cells:
|
| 285 |
for row_num in cell['row_nums']:
|
| 286 |
for column_num in cell['column_nums']:
|
| 287 |
+
table_array[row_num, column_num] = cell['cell_text']
|
| 288 |
|
| 289 |
header = table_array[:max_header_row+1,:]
|
| 290 |
flattened_header = []
|
|
|
|
| 299 |
cells = sorted(cells, key=lambda k: min(k['column_nums']))
|
| 300 |
cells = sorted(cells, key=lambda k: min(k['row_nums']))
|
| 301 |
|
| 302 |
+
table = ET.Element('table')
|
| 303 |
current_row = -1
|
| 304 |
|
| 305 |
for cell in cells:
|
|
|
|
| 315 |
if this_row > current_row:
|
| 316 |
current_row = this_row
|
| 317 |
if cell['header']:
|
| 318 |
+
cell_tag = 'th'
|
| 319 |
+
row = ET.SubElement(table, 'thead')
|
| 320 |
else:
|
| 321 |
+
cell_tag = 'td'
|
| 322 |
+
row = ET.SubElement(table, 'tr')
|
| 323 |
tcell = ET.SubElement(row, cell_tag, attrib=attrib)
|
| 324 |
tcell.text = cell['cell_text']
|
| 325 |
|
| 326 |
+
return str(ET.tostring(table, encoding='unicode', short_empty_elements=False))
|
| 327 |
|
| 328 |
|
| 329 |
# def cells_to_html(cells):
|
|
|
|
| 340 |
# for cell in r_cells:
|
| 341 |
# rowspan = cell['row_nums'][-1] - cell['row_nums'][0] + 1
|
| 342 |
# colspan = cell['column_nums'][-1] - cell['column_nums'][0] + 1
|
| 343 |
+
# r_html += f'<td rowspan='{rowspan}' colspan='{colspan}'>{escape(cell['text'])}</td>'
|
| 344 |
# html_code += f'<tr>{r_html}</tr>'
|
| 345 |
# html_code = '''<html>
|
| 346 |
# <head>
|
| 347 |
+
# <meta charset='UTF-8'>
|
| 348 |
# <style>
|
| 349 |
# table, th, td {
|
| 350 |
# border: 1px solid black;
|
|
|
|
| 353 |
# </style>
|
| 354 |
# </head>
|
| 355 |
# <body>
|
| 356 |
+
# <table frame='hsides' rules='groups' width='100%%'>
|
| 357 |
# %s
|
| 358 |
# </table>
|
| 359 |
# </body>
|
|
|
|
| 365 |
|
| 366 |
def main():
|
| 367 |
|
| 368 |
+
st.set_page_config(layout='wide')
|
| 369 |
+
st.title('Table Extraction Demo')
|
| 370 |
st.write('\n')
|
| 371 |
|
| 372 |
cols = st.columns((1, 1))
|
| 373 |
+
cols[0].subheader('Input page')
|
| 374 |
+
cols[1].subheader('Table(s) detected')
|
| 375 |
|
| 376 |
+
st.sidebar.title('Image upload')
|
| 377 |
st.set_option('deprecation.showfileUploaderEncoding', False)
|
| 378 |
+
filename = st.sidebar.file_uploader('Upload files', type=['png', 'jpeg', 'jpg'])
|
| 379 |
|
| 380 |
+
if st.sidebar.button('Analyze image'):
|
| 381 |
|
| 382 |
if filename is None:
|
| 383 |
+
st.sidebar.write('Please upload an image')
|
| 384 |
|
| 385 |
else:
|
| 386 |
print(filename)
|
|
|
|
| 392 |
cols[1].image(vis_det_img)
|
| 393 |
|
| 394 |
str_cols = st.columns((len(crop_images), ) * 5)
|
| 395 |
+
str_cols[0].subheader('Table image')
|
| 396 |
+
str_cols[1].subheader('OCR result')
|
| 397 |
+
str_cols[2].subheader('Structure result')
|
| 398 |
+
str_cols[3].subheader('Cells result')
|
| 399 |
+
str_cols[4].subheader('CSV result')
|
| 400 |
|
| 401 |
+
for i, img in enumerate(crop_images):
|
| 402 |
ocr_result = ocr(img)
|
| 403 |
structure_result = table_structure(img)
|
| 404 |
table_structures, cells, confidence_score = convert_stucture(ocr_result, img, structure_result)
|
| 405 |
cells = extract_text_from_cells(cells)
|
| 406 |
html_result = cells_to_html(cells)
|
| 407 |
df, csv_result = cells_to_csv(cells)
|
| 408 |
+
#print(df)
|
| 409 |
|
| 410 |
vis_ocr_img = visualize_ocr(img, ocr_result)
|
| 411 |
vis_str_img = visualize_structure(img, structure_result)
|
| 412 |
vis_cells_img = visualize_cells(img, cells)
|
| 413 |
+
|
| 414 |
str_cols[0].image(img)
|
| 415 |
str_cols[1].image(vis_ocr_img)
|
| 416 |
str_cols[2].image(vis_str_img)
|
| 417 |
str_cols[3].image(vis_cells_img)
|
| 418 |
#str_cols[4].dataframe(df)
|
| 419 |
+
str_cols[4].download_button('Download table', csv_result, f'table-{i}.csv', 'text/csv', key=f'download-csv-{i}')
|
| 420 |
|
| 421 |
st.markdown(html_result, unsafe_allow_html=True)
|
| 422 |
|