File size: 14,171 Bytes
f4c516d
 
 
ba538d2
f4c516d
ba538d2
f4c516d
ba538d2
 
 
 
f4c516d
ba538d2
f4c516d
 
 
 
 
 
ba538d2
 
f4c516d
 
 
ba538d2
f4c516d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0648ca5
ba538d2
0648ca5
 
 
 
 
 
ba538d2
 
 
 
 
 
 
 
 
0648ca5
f4c516d
0648ca5
f4c516d
 
 
 
ba538d2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f4c516d
ba538d2
 
 
 
 
 
 
 
 
 
 
 
f4c516d
 
 
ba538d2
0648ca5
 
f4c516d
 
 
ba538d2
f4c516d
 
 
 
 
 
 
 
 
 
ba538d2
 
 
 
 
f4c516d
 
 
 
 
 
 
 
 
 
ba538d2
f4c516d
ba538d2
f4c516d
 
 
 
 
 
 
 
 
ba538d2
f4c516d
 
ba538d2
f4c516d
ba538d2
f4c516d
 
 
ba538d2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0648ca5
f4c516d
 
 
 
 
 
 
ba538d2
f4c516d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ba538d2
 
 
 
 
 
 
 
 
 
 
 
 
 
f4c516d
ba538d2
 
 
 
 
 
f4c516d
 
 
ba538d2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f4c516d
ba538d2
 
 
 
 
 
08161c3
ba538d2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f4c516d
 
 
 
 
 
 
 
2860157
f4c516d
ba538d2
f4c516d
 
 
 
 
08161c3
f4c516d
de2f578
 
f4c516d
de2f578
 
ba538d2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
17c78a6
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
import streamlit as st

import PIL
import cv2
import numpy as np
import pandas as pd
import torch
# import sys
# import json
from collections import OrderedDict, defaultdict
import xml.etree.ElementTree as ET

from paddleocr import PaddleOCR
import pytesseract
from pytesseract import Output

import postprocess


ocr_instance = PaddleOCR(use_angle_cls=False, lang='en', use_gpu=True)
detection_model = torch.hub.load('ultralytics/yolov5', 'custom', 'weights/detection_wts.pt', force_reload=True)
structure_model = torch.hub.load('ultralytics/yolov5', 'custom', 'weights/structure_wts.pt', force_reload=True)
imgsz = 640

detection_class_names = ['table', 'table rotated']
structure_class_names = [
    'table', 'table column', 'table row', 'table column header',
    'table projected row header', 'table spanning cell', 'no object'
]
structure_class_map = {k: v for v, k in enumerate(structure_class_names)}
structure_class_thresholds = {
    "table": 0.5,
    "table column": 0.5,
    "table row": 0.5,
    "table column header": 0.25,
    "table projected row header": 0.25,
    "table spanning cell": 0.25,
    "no object": 10
}


def PIL_to_cv(pil_img):
    return cv2.cvtColor(np.array(pil_img), cv2.COLOR_RGB2BGR)


def cv_to_PIL(cv_img):
    return PIL.Image.fromarray(cv2.cvtColor(cv_img, cv2.COLOR_BGR2RGB))


def table_detection(pil_img):
    image = PIL_to_cv(pil_img)
    pred = detection_model(image, size=imgsz)
    pred = pred.xywhn[0]
    result = pred.cpu().numpy()
    return result


def table_structure(pil_img):
    image = PIL_to_cv(pil_img)
    pred = structure_model(image, size=imgsz)
    pred = pred.xywhn[0]
    result = pred.cpu().numpy()
    return result


def crop_image(pil_img, detection_result):
    crop_images = []
    image = PIL_to_cv(pil_img)
    width = image.shape[1]
    height = image.shape[0]
    # print(width, height)
    for i, result in enumerate(detection_result):
        class_id = int(result[5])
        score = float(result[4])
        min_x = result[0]
        min_y = result[1]
        w = result[2]
        h = result[3]

        x1 = max(0, int((min_x - w / 2 - 0.02) * width))
        y1 = max(0, int((min_y - h / 2 - 0.02) * height))
        x2 = min(width, int((min_x + w / 2 + 0.02) * width))
        y2 = min(height, int((min_y + h / 2 + 0.02) * height))
        # print(x1, y1, x2, y2)
        crop_image = image[y1:y2, x1:x2, :]
        crop_images.append(cv_to_PIL(crop_image))

        cv2.rectangle(image, (x1, y1), (x2, y2), color=(0, 255, 0))

    return crop_images, cv_to_PIL(image)


def ocr(pil_img):
    image = PIL_to_cv(pil_img)
    result = ocr_instance.ocr(image)
    ocr_res = []

    for ps, (text, score) in result[0]:
        x1 = min(p[0] for p in ps)
        y1 = min(p[1] for p in ps)
        x2 = max(p[0] for p in ps)
        y2 = max(p[1] for p in ps)
        word_info = {
            'bbox': [x1, y1, x2, y2],
            'text': text
        }
        ocr_res.append(word_info)

    return ocr_res


def convert_stucture(page_tokens, pil_img, structure_result):
    image = PIL_to_cv(pil_img)

    width = image.shape[1]
    height = image.shape[0]
    # print(width, height)

    bboxes = []
    scores = []
    labels = []
    for i, result in enumerate(structure_result):
        class_id = int(result[5])
        score = float(result[4])
        min_x = result[0]
        min_y = result[1]
        w = result[2]
        h = result[3]

        x1 = int((min_x - w / 2) * width)
        y1 = int((min_y - h / 2) * height)
        x2 = int((min_x + w / 2) * width)
        y2 = int((min_y + h / 2) * height)
        # print(x1, y1, x2, y2)

        bboxes.append([x1, y1, x2, y2])
        scores.append(score)
        labels.append(class_id)

    table_objects = []
    for bbox, score, label in zip(bboxes, scores, labels):
        table_objects.append({'bbox': bbox, 'score': score, 'label': label})
    # print('table_objects:', table_objects)

    table = {'objects': table_objects, 'page_num': 0}

    table_class_objects = [obj for obj in table_objects if obj['label'] == structure_class_map['table']]
    if len(table_class_objects) > 1:
        table_class_objects = sorted(table_class_objects, key=lambda x: x['score'], reverse=True)
    try:
        table_bbox = list(table_class_objects[0]['bbox'])
    except:
        table_bbox = (0,0,1000,1000)
    # print('table_class_objects:', table_class_objects)
    # print('table_bbox:', table_bbox)

    tokens_in_table = [token for token in page_tokens if postprocess.iob(token['bbox'], table_bbox) >= 0.5]
    # print('tokens_in_table:', tokens_in_table)

    table_structures, cells, confidence_score = postprocess.objects_to_cells(table, table_objects, tokens_in_table, structure_class_names, structure_class_thresholds)

    return table_structures, cells, confidence_score


def visualize_ocr(pil_img, ocr_result):
    image = PIL_to_cv(pil_img)
    for i, res in enumerate(ocr_result):
        bbox = res['bbox']
        x1 = int(bbox[0])
        y1 = int(bbox[1])
        x2 = int(bbox[2])
        y2 = int(bbox[3])
        cv2.rectangle(image, (x1, y1), (x2, y2), color=(0, 255, 0))
    return cv_to_PIL(image)


def visualize_structure(pil_img, structure_result):
    image = PIL_to_cv(pil_img)
    width = image.shape[1]
    height = image.shape[0]
    # print(width, height)
    for i, result in enumerate(structure_result):
        class_id = int(result[5])
        score = float(result[4])
        min_x = result[0]
        min_y = result[1]
        w = result[2]
        h = result[3]
        
        x1 = int((min_x - w / 2) * width)
        y1 = int((min_y - h / 2) * height)
        x2 = int((min_x + w / 2) * width)
        y2 = int((min_y + h / 2) * height)
        # print(x1, y1, x2, y2)
        
        if score >= structure_class_map[structure_class_names[class_id]]:
            cv2.rectangle(image, (x1, y1), (x2, y2), color=(0, 0, 255))
            #cv2.putText(image, str(i)+'-'+str(class_id), (x1-10, y1), cv2.FONT_HERSHEY_SIMPLEX, fontScale=1, color=(0,0,255))
    
    return cv_to_PIL(image)


def visualize_cells(pil_img, cells):
    image = PIL_to_cv(pil_img)
    for i, cell in enumerate(cells):
        bbox = cell['bbox']
        x1 = int(bbox[0])
        y1 = int(bbox[1])
        x2 = int(bbox[2])
        y2 = int(bbox[3])
        cv2.rectangle(image, (x1, y1), (x2, y2), color=(0, 255, 0))
    return cv_to_PIL(image)


def pytess(cell_pil_img):
    return ' '.join(pytesseract.image_to_data(cell_pil_img, output_type=Output.DICT, config='-c tessedit_char_blacklist=œ˜â€œï¬â™Ã©œ¢!|”?«“¥ --tessdata-dir tessdata --oem 3 --psm 6')['text']).strip()


def resize(pil_img, size=1800):
    length_x, width_y = pil_img.size
    factor = max(1, size / length_x)
    size = int(factor * length_x), int(factor * width_y)
    pil_img = pil_img.resize(size, PIL.Image.ANTIALIAS)
    return pil_img, factor


def image_smoothening(img):
    ret1, th1 = cv2.threshold(img, 180, 255, cv2.THRESH_BINARY)
    ret2, th2 = cv2.threshold(th1, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU)
    blur = cv2.GaussianBlur(th2, (1, 1), 0)
    ret3, th3 = cv2.threshold(blur, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU)
    return th3


def remove_noise_and_smooth(pil_img):
    img = cv2.cvtColor(np.array(pil_img), cv2.COLOR_RGB2GRAY)
    filtered = cv2.adaptiveThreshold(img.astype(np.uint8), 255, cv2.ADAPTIVE_THRESH_MEAN_C, cv2.THRESH_BINARY, 41, 3)
    kernel = np.ones((1, 1), np.uint8)
    opening = cv2.morphologyEx(filtered, cv2.MORPH_OPEN, kernel)
    closing = cv2.morphologyEx(opening, cv2.MORPH_CLOSE, kernel)
    img = image_smoothening(img)
    or_image = cv2.bitwise_or(img, closing)
    pil_img = PIL.Image.fromarray(or_image)
    return pil_img


# def extract_text_from_cells(pil_img, cells):
#     pil_img, factor = resize(pil_img)
#     #pil_img = remove_noise_and_smooth(pil_img)
#     #display(pil_img)
#     for cell in cells:
#         bbox = [x * factor for x in cell['bbox']]
#         cell_pil_img = pil_img.crop(bbox)
#         #cell_pil_img = remove_noise_and_smooth(cell_pil_img)
#         #cell_pil_img = tess_prep(cell_pil_img)
#         cell['cell text'] = pytess(cell_pil_img)
#     return cells


def extract_text_from_cells(cells, sep=' '):
    for cell in cells:
        spans = cell['spans']
        text = ''
        for span in spans:
            if 'text' in span:
                text += span['text'] + sep
        cell['cell_text'] = text
    return cells


def cells_to_csv(cells):
    if len(cells) > 0:
        num_columns = max([max(cell['column_nums']) for cell in cells]) + 1
        num_rows = max([max(cell['row_nums']) for cell in cells]) + 1
    else:
        return

    header_cells = [cell for cell in cells if cell['header']]
    if len(header_cells) > 0:
        max_header_row = max([max(cell['row_nums']) for cell in header_cells])
    else:
        max_header_row = -1

    table_array = np.empty([num_rows, num_columns], dtype="object")
    if len(cells) > 0:
        for cell in cells:
            for row_num in cell['row_nums']:
                for column_num in cell['column_nums']:
                    table_array[row_num, column_num] = cell["cell_text"]

    header = table_array[:max_header_row+1,:]
    flattened_header = []
    for col in header.transpose():
        flattened_header.append(' | '.join(OrderedDict.fromkeys(col)))
    df = pd.DataFrame(table_array[max_header_row+1:,:], index=None, columns=flattened_header)

    return df, df.to_csv(index=None)


def cells_to_html(cells):
    cells = sorted(cells, key=lambda k: min(k['column_nums']))
    cells = sorted(cells, key=lambda k: min(k['row_nums']))

    table = ET.Element("table")
    current_row = -1

    for cell in cells:
        this_row = min(cell['row_nums'])

        attrib = {}
        colspan = len(cell['column_nums'])
        if colspan > 1:
            attrib['colspan'] = str(colspan)
        rowspan = len(cell['row_nums'])
        if rowspan > 1:
            attrib['rowspan'] = str(rowspan)
        if this_row > current_row:
            current_row = this_row
            if cell['header']:
                cell_tag = "th"
                row = ET.SubElement(table, "thead")
            else:
                cell_tag = "td"
                row = ET.SubElement(table, "tr")
        tcell = ET.SubElement(row, cell_tag, attrib=attrib)
        tcell.text = cell['cell_text']

    return str(ET.tostring(table, encoding="unicode", short_empty_elements=False))


# def cells_to_html(cells):
#     for cell in cells:
#         cell['column_nums'].sort()
#         cell['row_nums'].sort()
#     n_cols = max(cell['column_nums'][-1] for cell in cells) + 1
#     n_rows = max(cell['row_nums'][-1] for cell in cells) + 1
#     html_code = ''
#     for r in range(n_rows):
#         r_cells = [cell for cell in cells if cell['row_nums'][0] == r]
#         r_cells.sort(key=lambda x: x['column_nums'][0])
#         r_html = ''
#         for cell in r_cells:
#             rowspan = cell['row_nums'][-1] - cell['row_nums'][0] + 1
#             colspan = cell['column_nums'][-1] - cell['column_nums'][0] + 1
#             r_html += f'<td rowspan="{rowspan}" colspan="{colspan}">{escape(cell["text"])}</td>'
#         html_code += f'<tr>{r_html}</tr>'
#     html_code = '''<html>
#                    <head>
#                    <meta charset="UTF-8">
#                    <style>
#                    table, th, td {
#                      border: 1px solid black;
#                      font-size: 10px;
#                    }
#                    </style>
#                    </head>
#                    <body>
#                    <table frame="hsides" rules="groups" width="100%%">
#                      %s
#                    </table>
#                    </body>
#                    </html>''' % html_code
#     soup = bs(html_code)
#     html_code = soup.prettify()
#     return html_code


def main():

    st.set_page_config(layout="wide")
    st.title("Table Structure Recognition Demo")
    st.write('\n')

    cols = st.columns((1, 1))
    cols[0].subheader("Input page")
    cols[1].subheader("Table(s) detected")

    st.sidebar.title("Image upload")
    st.set_option('deprecation.showfileUploaderEncoding', False)
    filename = st.sidebar.file_uploader("Upload files", type=['png', 'jpeg', 'jpg'])

    if st.sidebar.button("Analyze image"):

        if filename is None:
            st.sidebar.write("Please upload an image")

        else:
            print(filename)
            pil_img = PIL.Image.open(filename)

            detection_result = table_detection(pil_img)
            crop_images, vis_det_img = crop_image(pil_img, detection_result)
            cols[0].image(vis_det_img)

            str_cols = st.columns((len(crop_images), ) * 6)
            str_cols[0].subheader("Table image")
            str_cols[1].subheader("OCR result")
            str_cols[2].subheader("Structure result")
            str_cols[3].subheader("Cells result")
            str_cols[4].subheader("HTML result")
            str_cols[5].subheader("CSV result")

            for img in crop_images:
                ocr_result = ocr(img)
                structure_result = table_structure(img)
                table_structures, cells, confidence_score = convert_stucture(ocr_result, img, structure_result)
                cells = extract_text_from_cells(cells)
                html_result = cells_to_html(cells)
                df, csv_result = cells_to_csv(cells)

                vis_ocr_img = visualize_ocr(img, ocr_result)
                vis_str_img = visualize_structure(img, structure_result)
                vis_cells_img = visualize_cells(img, cells)
                
                str_cols[0].image(img)
                str_cols[1].image(vis_ocr_img)
                str_cols[2].image(vis_str_img)
                str_cols[3].image(vis_cells_img)
                str_cols[4].markdown(html_result, unsafe_allow_html=True)
                str_cols[5].dataframe(df)
                str_cols[5].download_button("Download table", csv_result, "file.csv", "text/csv", key='download-csv')


if __name__ == '__main__':
    main()