diff --git "a/notebooks/Shipping_label_NER.ipynb" "b/notebooks/Shipping_label_NER.ipynb" new file mode 100644--- /dev/null +++ "b/notebooks/Shipping_label_NER.ipynb" @@ -0,0 +1,15096 @@ +{ + "nbformat": 4, + "nbformat_minor": 0, + "metadata": { + "colab": { + "provenance": [], + "gpuType": "T4", + "include_colab_link": true + }, + "kernelspec": { + "name": "python3", + "display_name": "Python 3" + }, + "language_info": { + "name": "python" + }, + "accelerator": "GPU", + "widgets": { + "application/vnd.jupyter.widget-state+json": { + "c18b4e07a5634929bb1cf1869b5bd3cd": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_e16d47fc272444c5804ed52924092a54", + "IPY_MODEL_d95bf93709a54bd0a4003eb7d0c54063", + "IPY_MODEL_b90ba9ba331f4fea9915183527425152" + ], + "layout": "IPY_MODEL_ce33d4e563e443b99ebb9b70f508b2f7" + } + }, + "e16d47fc272444c5804ed52924092a54": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_7f0872cc54304ff7839fd52c390ab23a", + "placeholder": "​", + "style": "IPY_MODEL_cd54d91069034b1ab8d54277242e1212", + "value": "tokenizer_config.json: 100%" + } + }, + "d95bf93709a54bd0a4003eb7d0c54063": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_65d197e11c77469d9d05a054e63fba77", + "max": 25, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_36c979ba9b374a64870941b6c269c70f", + "value": 25 + } + }, + "b90ba9ba331f4fea9915183527425152": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_ed4f92c51cbe4416b27d5b2e06a61ff8", + "placeholder": "​", + "style": "IPY_MODEL_4498ec5e15814967be17503536acd8fa", + "value": " 25.0/25.0 [00:00<00:00, 1.70kB/s]" + } + }, + "ce33d4e563e443b99ebb9b70f508b2f7": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "7f0872cc54304ff7839fd52c390ab23a": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "cd54d91069034b1ab8d54277242e1212": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "65d197e11c77469d9d05a054e63fba77": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "36c979ba9b374a64870941b6c269c70f": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "ed4f92c51cbe4416b27d5b2e06a61ff8": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "4498ec5e15814967be17503536acd8fa": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "ba981d27be0a434fb215169036ca4d47": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_f837a0b50aa84bc58d256ef0434c101d", + "IPY_MODEL_222adb2c788e4dc5964d005b6752dab8", + "IPY_MODEL_b4908d98da594c1e8932cdcc63d3fa53" + ], + "layout": "IPY_MODEL_c9a7bba8cef94fc3ac38fededc4206b6" + } + }, + "f837a0b50aa84bc58d256ef0434c101d": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_52bcf8dfa4964e0aa3bc882c3b01babf", + "placeholder": "​", + "style": "IPY_MODEL_52a28fd53a984c829f24883f612e9264", + "value": "config.json: 100%" + } + }, + "222adb2c788e4dc5964d005b6752dab8": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_1c4207338d5c41af91975f4eba907c06", + "max": 616, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_54d17297d0054f2f97c866896fc275f0", + "value": 616 + } + }, + "b4908d98da594c1e8932cdcc63d3fa53": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_9cba19df4b044452bf585d2ef1066a5f", + "placeholder": "​", + "style": "IPY_MODEL_78b7a1ee87f340439a6c8f53c217ba17", + "value": " 616/616 [00:00<00:00, 30.3kB/s]" + } + }, + "c9a7bba8cef94fc3ac38fededc4206b6": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "52bcf8dfa4964e0aa3bc882c3b01babf": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "52a28fd53a984c829f24883f612e9264": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "1c4207338d5c41af91975f4eba907c06": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "54d17297d0054f2f97c866896fc275f0": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "9cba19df4b044452bf585d2ef1066a5f": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "78b7a1ee87f340439a6c8f53c217ba17": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "f19c8a98bc494fb294a27b5d180877f1": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_dec6e5de29f744aeadf716d91af52bf0", + "IPY_MODEL_7e639de76dc94ac68b3f1ead715c0215", + "IPY_MODEL_482a10e359f848039a796e2ed4fad03b" + ], + "layout": "IPY_MODEL_e851d46ff72d4843a974f6e3e4962542" + } + }, + "dec6e5de29f744aeadf716d91af52bf0": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_6d499c9ca96349f6a78a55069af586af", + "placeholder": "​", + "style": "IPY_MODEL_2ed8f78c1a414b93b4293ef3a2e368f9", + "value": "sentencepiece.bpe.model: 100%" + } + }, + "7e639de76dc94ac68b3f1ead715c0215": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_f57eee3bcf924f77a553c792431608ad", + "max": 5069051, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_7e390da8f4134b58b3ac0351bdf0729c", + "value": 5069051 + } + }, + "482a10e359f848039a796e2ed4fad03b": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_7f3d8132f798405c8359ddfb886e448b", + "placeholder": "​", + "style": "IPY_MODEL_49fee89388804ee79d0574f5aa7ac928", + "value": " 5.07M/5.07M [00:00<00:00, 29.1MB/s]" + } + }, + "e851d46ff72d4843a974f6e3e4962542": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "6d499c9ca96349f6a78a55069af586af": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "2ed8f78c1a414b93b4293ef3a2e368f9": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "f57eee3bcf924f77a553c792431608ad": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "7e390da8f4134b58b3ac0351bdf0729c": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "7f3d8132f798405c8359ddfb886e448b": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "49fee89388804ee79d0574f5aa7ac928": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "3dafad27f524422c848165dcd0baa9eb": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_4aec17e7b4f34c77a016202dc32027a6", + "IPY_MODEL_d3b0c0b11c3845289e976d635352c712", + "IPY_MODEL_47b4097d57c8466193037605b7c9a8ab" + ], + "layout": "IPY_MODEL_714eec46a29f4896aa83924f0c200fac" + } + }, + "4aec17e7b4f34c77a016202dc32027a6": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_a494c37e39df4f91b09507f79eea7a6a", + "placeholder": "​", + "style": "IPY_MODEL_855be793ef9e41a99b99ade4b95c1fe3", + "value": "tokenizer.json: 100%" + } + }, + "d3b0c0b11c3845289e976d635352c712": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_b51c0a2e93864935bdbd2308e478a47e", + "max": 9096718, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_2917b399c7bf4599a614a5314cb3f9b2", + "value": 9096718 + } + }, + "47b4097d57c8466193037605b7c9a8ab": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_fae1dc5f82044cc5bbe863285dd87da6", + "placeholder": "​", + "style": "IPY_MODEL_a2e32d2b66604c95a5b4c219e892b675", + "value": " 9.10M/9.10M [00:00<00:00, 27.9MB/s]" + } + }, + "714eec46a29f4896aa83924f0c200fac": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "a494c37e39df4f91b09507f79eea7a6a": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "855be793ef9e41a99b99ade4b95c1fe3": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "b51c0a2e93864935bdbd2308e478a47e": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "2917b399c7bf4599a614a5314cb3f9b2": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "fae1dc5f82044cc5bbe863285dd87da6": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "a2e32d2b66604c95a5b4c219e892b675": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "60ee88fb52de47cf8c661e723a3f7f05": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_1a7a5a9eded149bcb4170da34c47bdee", + "IPY_MODEL_99b8f7cd76ce4d8cb3690e795bf896eb", + "IPY_MODEL_af18a8d8e70940169d839c6a857884c4" + ], + "layout": "IPY_MODEL_817978a5c92b4371a5a85cab84c67034" + } + }, + "1a7a5a9eded149bcb4170da34c47bdee": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_2a374450c9954701aa101a3d15bedfdf", + "placeholder": "​", + "style": "IPY_MODEL_6fa7487cc8c0458a87f7e522c7489205", + "value": "model.safetensors: 100%" + } + }, + "99b8f7cd76ce4d8cb3690e795bf896eb": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_7080ddf19d544cd68a1d5beac78ccb07", + "max": 260815972, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_0e2eeba08b34428ba8c6cec0f5061997", + "value": 260815972 + } + }, + "af18a8d8e70940169d839c6a857884c4": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_5b795044243f4f2ba562b76993e5e9a5", + "placeholder": "​", + "style": "IPY_MODEL_6ad7a9f47709470fbce3ebc6b6df4415", + "value": " 261M/261M [00:04<00:00, 56.6MB/s]" + } + }, + "817978a5c92b4371a5a85cab84c67034": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "2a374450c9954701aa101a3d15bedfdf": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "6fa7487cc8c0458a87f7e522c7489205": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "7080ddf19d544cd68a1d5beac78ccb07": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "0e2eeba08b34428ba8c6cec0f5061997": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "5b795044243f4f2ba562b76993e5e9a5": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "6ad7a9f47709470fbce3ebc6b6df4415": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "d7cd5a9e10634439a1232945e5cdcc19": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_72a63f5d04ca41b19d5c933e668f3e5e", + "IPY_MODEL_c3010269ce8a45509b900945448e7a59", + "IPY_MODEL_eb0a2a2a916447b9b4526182e8e0ee6c" + ], + "layout": "IPY_MODEL_f10d55952ced44ad99b9344e7882c733" + } + }, + "72a63f5d04ca41b19d5c933e668f3e5e": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_24db282d2bec4178a41870f98cd77978", + "placeholder": "​", + "style": "IPY_MODEL_3e8c746979f84b578fa43e8d4bedfa7a", + "value": "tokenizer_config.json: 100%" + } + }, + "c3010269ce8a45509b900945448e7a59": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_6cc96ac0676d4d2b88854bc319162192", + "max": 48, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_1c663101871e44cbb2b3b51435afcebd", + "value": 48 + } + }, + "eb0a2a2a916447b9b4526182e8e0ee6c": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_3d74f6fdfcc6450e8152edb342944617", + "placeholder": "​", + "style": "IPY_MODEL_d37cdbb0ba4243e2b6ac50e082d569c0", + "value": " 48.0/48.0 [00:00<00:00, 3.15kB/s]" + } + }, + "f10d55952ced44ad99b9344e7882c733": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "24db282d2bec4178a41870f98cd77978": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "3e8c746979f84b578fa43e8d4bedfa7a": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "6cc96ac0676d4d2b88854bc319162192": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "1c663101871e44cbb2b3b51435afcebd": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "3d74f6fdfcc6450e8152edb342944617": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "d37cdbb0ba4243e2b6ac50e082d569c0": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "81c1865eb4854617868dc5367b336f37": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_8bc184cd03594e959c7bfee39dc06311", + "IPY_MODEL_af035cc9ff3d450e8277870e732cfd84", + "IPY_MODEL_807beb95b9614f05ad71ea75ab4ebe8a" + ], + "layout": "IPY_MODEL_d95b2befc2174930b3e26b4b44d0d19b" + } + }, + "8bc184cd03594e959c7bfee39dc06311": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_68c2ae33c39c4a22b2d943c0fa3d3578", + "placeholder": "​", + "style": "IPY_MODEL_d370aaecd4594d87b9f5bd56819f43f0", + "value": "config.json: 100%" + } + }, + "af035cc9ff3d450e8277870e732cfd84": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_54aef43e55a74556ba031b9ca0703f4f", + "max": 570, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_1b1bd825c40e4d1886fd0d933f7b85dc", + "value": 570 + } + }, + "807beb95b9614f05ad71ea75ab4ebe8a": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_c827bcbf83fd4b72a151e7f2e236ee2c", + "placeholder": "​", + "style": "IPY_MODEL_c7479edadb16409892b8d40eae8c5ae7", + "value": " 570/570 [00:00<00:00, 38.7kB/s]" + } + }, + "d95b2befc2174930b3e26b4b44d0d19b": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "68c2ae33c39c4a22b2d943c0fa3d3578": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "d370aaecd4594d87b9f5bd56819f43f0": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "54aef43e55a74556ba031b9ca0703f4f": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "1b1bd825c40e4d1886fd0d933f7b85dc": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "c827bcbf83fd4b72a151e7f2e236ee2c": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "c7479edadb16409892b8d40eae8c5ae7": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "ecdc5018b8564413b61e4a144de70789": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_41ea8f1dd0d743818a5d7984ff7e93ab", + "IPY_MODEL_76bb200c0e364a9fa6ab6cd8cae8122f", + "IPY_MODEL_39c59b5cda744b59859e4c16c74d5e4b" + ], + "layout": "IPY_MODEL_d2ed6dd95b4c4dafa60748b7f6a41cfa" + } + }, + "41ea8f1dd0d743818a5d7984ff7e93ab": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_e0d80b1df93f44e8bdcf4cbc4afe0fb3", + "placeholder": "​", + "style": "IPY_MODEL_e2717ee254c44d6e9e50b2b9c7eb1880", + "value": "vocab.txt: 100%" + } + }, + "76bb200c0e364a9fa6ab6cd8cae8122f": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_0814066fe77844119158291d7e3cb400", + "max": 231508, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_00c6e8d7e7394ddf9e5be62e89ce8bd7", + "value": 231508 + } + }, + "39c59b5cda744b59859e4c16c74d5e4b": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_88687d46d89946e8961854f42d437fee", + "placeholder": "​", + "style": "IPY_MODEL_9e9e9863e3c04fac9f2abbd37d02e3ad", + "value": " 232k/232k [00:00<00:00, 1.43MB/s]" + } + }, + "d2ed6dd95b4c4dafa60748b7f6a41cfa": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "e0d80b1df93f44e8bdcf4cbc4afe0fb3": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "e2717ee254c44d6e9e50b2b9c7eb1880": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "0814066fe77844119158291d7e3cb400": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "00c6e8d7e7394ddf9e5be62e89ce8bd7": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "88687d46d89946e8961854f42d437fee": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "9e9e9863e3c04fac9f2abbd37d02e3ad": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "5a6d2aeee5734dfea0f5d79437337401": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_a5ecacc31d4c439dbd1a6d29897cbe5a", + "IPY_MODEL_42e8205fa3224e27b183d18d02d4963e", + "IPY_MODEL_e74622c87a2d433f932c557c296e7372" + ], + "layout": "IPY_MODEL_1f03fe99e2054c49af372637c5049876" + } + }, + "a5ecacc31d4c439dbd1a6d29897cbe5a": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_885892016e394018a2899bd5beccc451", + "placeholder": "​", + "style": "IPY_MODEL_02ec11f904cc4b83bc2d3741514647cc", + "value": "tokenizer.json: 100%" + } + }, + "42e8205fa3224e27b183d18d02d4963e": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_0876516a3c714edf86d07db200afc3c0", + "max": 466062, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_3bb772d4c616468dad906282e66f704a", + "value": 466062 + } + }, + "e74622c87a2d433f932c557c296e7372": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_a60c123492864a93b86ec270171a4cc9", + "placeholder": "​", + "style": "IPY_MODEL_32012291680e4563831007e133fd320d", + "value": " 466k/466k [00:00<00:00, 1.93MB/s]" + } + }, + "1f03fe99e2054c49af372637c5049876": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "885892016e394018a2899bd5beccc451": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "02ec11f904cc4b83bc2d3741514647cc": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "0876516a3c714edf86d07db200afc3c0": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "3bb772d4c616468dad906282e66f704a": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "a60c123492864a93b86ec270171a4cc9": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "32012291680e4563831007e133fd320d": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "d09bf4b2b00645ae801039fe86eec1be": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_53dae5f5782446b79a54dfba95950859", + "IPY_MODEL_9c0f82538b15420f8810dd3c14b942f6", + "IPY_MODEL_bd7e5e72d86a4f3290a5c92b61fc8b3d" + ], + "layout": "IPY_MODEL_4aef3db3496c4117b72884967266e992" + } + }, + "53dae5f5782446b79a54dfba95950859": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_f12403295a384081bfa2748147d7b03d", + "placeholder": "​", + "style": "IPY_MODEL_3bfef039f33245e795ce431dd20b58be", + "value": "model.safetensors: 100%" + } + }, + "9c0f82538b15420f8810dd3c14b942f6": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_1178a785cf1c468dbfcf4b4a8c622249", + "max": 440449768, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_3186a33bf7b04dd7a8b7368acee94c47", + "value": 440449768 + } + }, + "bd7e5e72d86a4f3290a5c92b61fc8b3d": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_397ea04a9a7b40ec8e7edf03a66b4fa0", + "placeholder": "​", + "style": "IPY_MODEL_fdbeb8f01a1c46cba428648be4c1dd13", + "value": " 440M/440M [00:03<00:00, 151MB/s]" + } + }, + "4aef3db3496c4117b72884967266e992": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "f12403295a384081bfa2748147d7b03d": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "3bfef039f33245e795ce431dd20b58be": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "1178a785cf1c468dbfcf4b4a8c622249": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "3186a33bf7b04dd7a8b7368acee94c47": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "397ea04a9a7b40ec8e7edf03a66b4fa0": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "fdbeb8f01a1c46cba428648be4c1dd13": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "fba645b2f67747e6b6567ec0a5fdea20": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_79547ecdb2684c93b670c9b654429402", + "IPY_MODEL_fd6624bacc6d4c47acae7b4ede8c1f3b", + "IPY_MODEL_6cd6ee458afb48d398022267f39b0fc4" + ], + "layout": "IPY_MODEL_9b66439e9e7e422a97995cfb5d8f33b8" + } + }, + "79547ecdb2684c93b670c9b654429402": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_9858a3b7c3944e4fae6b3fadc9642125", + "placeholder": "​", + "style": "IPY_MODEL_775a0752d94a40138acdee0db8739031", + "value": "model.safetensors: 100%" + } + }, + "fd6624bacc6d4c47acae7b4ede8c1f3b": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_445f2113b9f7485c868570d49eb52568", + "max": 260815972, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_e709ba7a504b4efe934d3ee7774ffc5f", + "value": 260815972 + } + }, + "6cd6ee458afb48d398022267f39b0fc4": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_42ebf1faa74b46d5b1b868f83f44a657", + "placeholder": "​", + "style": "IPY_MODEL_b8992ac697014624a58a541efca24655", + "value": " 261M/261M [00:06<00:00, 53.7MB/s]" + } + }, + "9b66439e9e7e422a97995cfb5d8f33b8": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "9858a3b7c3944e4fae6b3fadc9642125": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "775a0752d94a40138acdee0db8739031": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "445f2113b9f7485c868570d49eb52568": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "e709ba7a504b4efe934d3ee7774ffc5f": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "42ebf1faa74b46d5b1b868f83f44a657": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "b8992ac697014624a58a541efca24655": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "be4b170b77c2428a83104f56c2774eff": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_ad4b06c06e894c58956c8708c0ccfd67", + "IPY_MODEL_f3efe96ce3d14872b1b62ef0b0f6122f", + "IPY_MODEL_1a6cb5fe580141c6bdeb1dc0a321d380" + ], + "layout": "IPY_MODEL_1f2a427df9604930b915441f2e89ddd3" + } + }, + "ad4b06c06e894c58956c8708c0ccfd67": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_2ac0d35389794c3faceb679a43c7ceea", + "placeholder": "​", + "style": "IPY_MODEL_b31ac4e6bd36460987d448b9e7b1f08c", + "value": "Upload 2 LFS files: 100%" + } + }, + "f3efe96ce3d14872b1b62ef0b0f6122f": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_492b9b0c9f594ef6ae0d238b694ca181", + "max": 2, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_97f064e2b05f44778b84d5d5d9cad20e", + "value": 2 + } + }, + "1a6cb5fe580141c6bdeb1dc0a321d380": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_43e09ad9787244f8bf20c01c7da81991", + "placeholder": "​", + "style": "IPY_MODEL_46b4241483ea4dc984cc92cce41514ee", + "value": " 2/2 [00:06<00:00,  6.45s/it]" + } + }, + "1f2a427df9604930b915441f2e89ddd3": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "2ac0d35389794c3faceb679a43c7ceea": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "b31ac4e6bd36460987d448b9e7b1f08c": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "492b9b0c9f594ef6ae0d238b694ca181": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "97f064e2b05f44778b84d5d5d9cad20e": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "43e09ad9787244f8bf20c01c7da81991": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "46b4241483ea4dc984cc92cce41514ee": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "3afc5d399625437196c6a52d36373f61": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_62f221b1ab7a4c608be46ab9fab43af1", + "IPY_MODEL_cbca91cd984d42fd9ad90fcb58331d6e", + "IPY_MODEL_63931ac1a75241dfb7519da2194969d2" + ], + "layout": "IPY_MODEL_a576f7800c0740a1a7b70c55e2c0f071" + } + }, + "62f221b1ab7a4c608be46ab9fab43af1": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_5cd48e3b8d1c42edadc2413f1baac426", + "placeholder": "​", + "style": "IPY_MODEL_51efa950d7a44737b9e7dbdf177be9a3", + "value": "events.out.tfevents.1711602729.7cf60fa1c92f.682.0: 100%" + } + }, + "cbca91cd984d42fd9ad90fcb58331d6e": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_59878cd245324664bbeb4aefc0fc36e4", + "max": 19400, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_bac939ffbe8f4edd9d4bf7f4281c0707", + "value": 19400 + } + }, + "63931ac1a75241dfb7519da2194969d2": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_71c6509f4497436fb9bd2c3e141990f4", + "placeholder": "​", + "style": "IPY_MODEL_20c2b2fd5aa24683ad3cbe18a485bcb1", + "value": " 19.4k/19.4k [00:00<00:00, 42.2kB/s]" + } + }, + "a576f7800c0740a1a7b70c55e2c0f071": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "5cd48e3b8d1c42edadc2413f1baac426": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "51efa950d7a44737b9e7dbdf177be9a3": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "59878cd245324664bbeb4aefc0fc36e4": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "bac939ffbe8f4edd9d4bf7f4281c0707": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "71c6509f4497436fb9bd2c3e141990f4": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "20c2b2fd5aa24683ad3cbe18a485bcb1": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "014c9bc0a96c4d84b591680bc0ea9cd1": { + "model_module": "@jupyter-widgets/controls", + "model_name": "VBoxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "VBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "VBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_c5e868801cee452996340508fbb75d7c", + "IPY_MODEL_1399178c2ff14e3a9ba8bf346edd6aff", + "IPY_MODEL_3a8d6eb73f4248e2a959bc55a2df77df", + "IPY_MODEL_daef153e621e40a2a87e03bf68fe68bc" + ], + "layout": "IPY_MODEL_0280f5e1b3f54bf08ab3fe4f589d6cf0" + } + }, + "e01913638285433a8a88f0897c5cdfb7": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_120995429b8f4bb8a5d6d4c8eaab72e9", + "placeholder": "​", + "style": "IPY_MODEL_d486b8c62a354b17a757080a11785083", + "value": "

Copy a token from your Hugging Face\ntokens page and paste it below.
Immediately click login after copying\nyour token or it might be stored in plain text in this notebook file.
" + } + }, + "00e7c403fbd648c685a52fabf0fefd4d": { + "model_module": "@jupyter-widgets/controls", + "model_name": "PasswordModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "PasswordModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "PasswordView", + "continuous_update": true, + "description": "Token:", + "description_tooltip": null, + "disabled": false, + "layout": "IPY_MODEL_168b61613e974caa997569ade26b92ba", + "placeholder": "​", + "style": "IPY_MODEL_05bcb25b4ef54690ba04ad44007c8512", + "value": "" + } + }, + "7327ec8d378a4701887c264ed47c273e": { + "model_module": "@jupyter-widgets/controls", + "model_name": "CheckboxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "CheckboxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "CheckboxView", + "description": "Add token as git credential?", + "description_tooltip": null, + "disabled": false, + "indent": true, + "layout": "IPY_MODEL_66d68f31077946feaa68c8dad57520d2", + "style": "IPY_MODEL_8226dbc61bb34fc4986d2e911334e901", + "value": true + } + }, + "3a123190eee84f24971fe70989a2cc30": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ButtonModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ButtonModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ButtonView", + "button_style": "", + "description": "Login", + "disabled": false, + "icon": "", + "layout": "IPY_MODEL_c461783efe6344dca6b6424ddd7eb764", + "style": "IPY_MODEL_da250f704a484cda835aba323145a672", + "tooltip": "" + } + }, + "e8052b48b5d64f17825e561a1cb07808": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_14f09b9a26a6417a9b8afd6250e98390", + "placeholder": "​", + "style": "IPY_MODEL_b3bf77c2b62342838a90e7f6219a9fcb", + "value": "\nPro Tip: If you don't already have one, you can create a dedicated\n'notebooks' token with 'write' access, that you can then easily reuse for all\nnotebooks. " + } + }, + "0280f5e1b3f54bf08ab3fe4f589d6cf0": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": "center", + "align_self": null, + "border": null, + "bottom": null, + "display": "flex", + "flex": null, + "flex_flow": "column", + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": "50%" + } + }, + "120995429b8f4bb8a5d6d4c8eaab72e9": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "d486b8c62a354b17a757080a11785083": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "168b61613e974caa997569ade26b92ba": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "05bcb25b4ef54690ba04ad44007c8512": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "66d68f31077946feaa68c8dad57520d2": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "8226dbc61bb34fc4986d2e911334e901": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "c461783efe6344dca6b6424ddd7eb764": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "da250f704a484cda835aba323145a672": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ButtonStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ButtonStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "button_color": null, + "font_weight": "" + } + }, + "14f09b9a26a6417a9b8afd6250e98390": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "b3bf77c2b62342838a90e7f6219a9fcb": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "56bb71ac717346e19ba77745abc27d63": { + "model_module": "@jupyter-widgets/controls", + "model_name": "LabelModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "LabelModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "LabelView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_9c329d920dc54c67ad1c4ddbf7a1f1c3", + "placeholder": "​", + "style": "IPY_MODEL_0014505744504ada8af612225f0c6a1e", + "value": "Connecting..." + } + }, + "9c329d920dc54c67ad1c4ddbf7a1f1c3": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "0014505744504ada8af612225f0c6a1e": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "c5e868801cee452996340508fbb75d7c": { + "model_module": "@jupyter-widgets/controls", + "model_name": "LabelModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "LabelModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "LabelView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_aa67c01a38ee4802a238ec310dc6b5ae", + "placeholder": "​", + "style": "IPY_MODEL_a4f2365752e1445ba2970cfaaf617c8e", + "value": "Token is valid (permission: write)." + } + }, + "1399178c2ff14e3a9ba8bf346edd6aff": { + "model_module": "@jupyter-widgets/controls", + "model_name": "LabelModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "LabelModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "LabelView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_9776fdf7be9c4297b156dfe7cf4616a1", + "placeholder": "​", + "style": "IPY_MODEL_26307b61c47544319d0df63fcb84da7f", + "value": "Your token has been saved in your configured git credential helpers (store)." + } + }, + "3a8d6eb73f4248e2a959bc55a2df77df": { + "model_module": "@jupyter-widgets/controls", + "model_name": "LabelModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "LabelModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "LabelView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_27be0374cc9640a3b39ab23d82ac7654", + "placeholder": "​", + "style": "IPY_MODEL_330cf889c0bf431f9363d97737bc81e2", + "value": "Your token has been saved to /root/.cache/huggingface/token" + } + }, + "daef153e621e40a2a87e03bf68fe68bc": { + "model_module": "@jupyter-widgets/controls", + "model_name": "LabelModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "LabelModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "LabelView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_e32d681198ef44f6b0af0d8c64eaa678", + "placeholder": "​", + "style": "IPY_MODEL_1fe85d9e150844749000b3a8822b5a23", + "value": "Login successful" + } + }, + "aa67c01a38ee4802a238ec310dc6b5ae": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "a4f2365752e1445ba2970cfaaf617c8e": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "9776fdf7be9c4297b156dfe7cf4616a1": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "26307b61c47544319d0df63fcb84da7f": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "27be0374cc9640a3b39ab23d82ac7654": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "330cf889c0bf431f9363d97737bc81e2": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "e32d681198ef44f6b0af0d8c64eaa678": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "1fe85d9e150844749000b3a8822b5a23": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "6d8dfad5a7134b288394f665050b6ba9": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_66370b7b286a40a2a99919b6b2780011", + "IPY_MODEL_4a4fa168a652451dbbd0486d6bfd7544", + "IPY_MODEL_6bb5478e9b334b768e1d87016462e6e9" + ], + "layout": "IPY_MODEL_c704991bebb844e193bb5f63ee6bc4ef" + } + }, + "66370b7b286a40a2a99919b6b2780011": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_ec99721a31e24e4dac6b6c88b05a44cd", + "placeholder": "​", + "style": "IPY_MODEL_da241d4af4294e7fbfa5a3d708e96c7f", + "value": "Downloading builder script: 100%" + } + }, + "4a4fa168a652451dbbd0486d6bfd7544": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_218e762683ce4697a85774464864819f", + "max": 4572, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_83a6fe74b49e48c088aee2f1a51feced", + "value": 4572 + } + }, + "6bb5478e9b334b768e1d87016462e6e9": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_239b196deed1457494a069874b5162b9", + "placeholder": "​", + "style": "IPY_MODEL_e8bbfda1ac6f475e981d23fef3d08357", + "value": " 4.57k/4.57k [00:00<00:00, 273kB/s]" + } + }, + "c704991bebb844e193bb5f63ee6bc4ef": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "ec99721a31e24e4dac6b6c88b05a44cd": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "da241d4af4294e7fbfa5a3d708e96c7f": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "218e762683ce4697a85774464864819f": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "83a6fe74b49e48c088aee2f1a51feced": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "239b196deed1457494a069874b5162b9": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "e8bbfda1ac6f475e981d23fef3d08357": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "a1c0b7a05c084136b175b75f15703025": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_2c1ccf5a560c48238d6f0ee1b54599d6", + "IPY_MODEL_74bedb9e39114c5c9e37f1130bdbffa6", + "IPY_MODEL_6b9c9ae4afdf440c82f16c43188ebac5" + ], + "layout": "IPY_MODEL_9004201a16334491a084d709acf3200a" + } + }, + "2c1ccf5a560c48238d6f0ee1b54599d6": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_4d53a0a17cac4b0790e2a82198d47d0c", + "placeholder": "​", + "style": "IPY_MODEL_e5d390e8cff04b939e085e104c82e628", + "value": "Downloading readme: 100%" + } + }, + "74bedb9e39114c5c9e37f1130bdbffa6": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_48545db37fd0414d8038c82a3b5e1f95", + "max": 25, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_1f2b7ce41663463a8daea934ed7fb319", + "value": 25 + } + }, + "6b9c9ae4afdf440c82f16c43188ebac5": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_984141e68eb64b2ca1174a60649f4ec0", + "placeholder": "​", + "style": "IPY_MODEL_aa92cc3bbdde40e5896651e68dae596a", + "value": " 25.0/25.0 [00:00<00:00, 705B/s]" + } + }, + "9004201a16334491a084d709acf3200a": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "4d53a0a17cac4b0790e2a82198d47d0c": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "e5d390e8cff04b939e085e104c82e628": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "48545db37fd0414d8038c82a3b5e1f95": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "1f2b7ce41663463a8daea934ed7fb319": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "984141e68eb64b2ca1174a60649f4ec0": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "aa92cc3bbdde40e5896651e68dae596a": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "287585512a294f4395c448fbfad6a58e": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_66d34321df4a47b59dc9ded0bff190fe", + "IPY_MODEL_080c9ac0d2b9400d93cf798179c4452a", + "IPY_MODEL_2067b902bc424372a7e52a98bda86c96" + ], + "layout": "IPY_MODEL_ac480d83be0c42cfb7ec40cf22afe0ec" + } + }, + "66d34321df4a47b59dc9ded0bff190fe": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_eb53b437c9c245f48fdfffe51be9c9ca", + "placeholder": "​", + "style": "IPY_MODEL_8af15bd4fc96459b83ae02bf41e4c625", + "value": "Downloading data: " + } + }, + "080c9ac0d2b9400d93cf798179c4452a": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_601cf2e241064bcdafc95bada82b5625", + "max": 2940, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_31f2b82c89314115896b352032f1575b", + "value": 2940 + } + }, + "2067b902bc424372a7e52a98bda86c96": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_39e0fec24cc54ceda07a1dfdd2959b80", + "placeholder": "​", + "style": "IPY_MODEL_4a89829102c6406ea62926577835df4e", + "value": " 11.4k/? [00:00<00:00, 743kB/s]" + } + }, + "ac480d83be0c42cfb7ec40cf22afe0ec": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "eb53b437c9c245f48fdfffe51be9c9ca": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "8af15bd4fc96459b83ae02bf41e4c625": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "601cf2e241064bcdafc95bada82b5625": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "31f2b82c89314115896b352032f1575b": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "39e0fec24cc54ceda07a1dfdd2959b80": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "4a89829102c6406ea62926577835df4e": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "e59d28ea32fa4faa8ff5ed2f55896aae": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_389c490c84f84f8eb7162753857f8570", + "IPY_MODEL_dfdbc2829ddb45ec8491a7f63f27fbdf", + "IPY_MODEL_575db7f207164401a3fc9077ee6e8caa" + ], + "layout": "IPY_MODEL_8d2f8b6fd6e14b329efffaf00b6a029b" + } + }, + "389c490c84f84f8eb7162753857f8570": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_b468d42c67854eacb9b6aa67499b6db5", + "placeholder": "​", + "style": "IPY_MODEL_c14210eee2674d89ac4e6629ecdc2c1f", + "value": "Downloading data: " + } + }, + "dfdbc2829ddb45ec8491a7f63f27fbdf": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_c254d469271147cb84040b49dbc6e56c", + "max": 527, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_d7648d4c9d244de291403b72b6203db6", + "value": 527 + } + }, + "575db7f207164401a3fc9077ee6e8caa": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_b1158eccfad84f3e97cf6eeaf5fda09e", + "placeholder": "​", + "style": "IPY_MODEL_7b0214bf10f044cdbd081d4f80b2268f", + "value": " 989/? [00:00<00:00, 52.0kB/s]" + } + }, + "8d2f8b6fd6e14b329efffaf00b6a029b": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "b468d42c67854eacb9b6aa67499b6db5": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "c14210eee2674d89ac4e6629ecdc2c1f": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "c254d469271147cb84040b49dbc6e56c": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "d7648d4c9d244de291403b72b6203db6": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "b1158eccfad84f3e97cf6eeaf5fda09e": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "7b0214bf10f044cdbd081d4f80b2268f": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "613d4e68c8f84611be76a30608c3a751": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_01836632a6df4912afad2f9c4017657b", + "IPY_MODEL_8117489f037b4384866a67905e74c2d0", + "IPY_MODEL_1c729793ca7e463dbdc90c8cf47455f8" + ], + "layout": "IPY_MODEL_679f4aef09934a8ca8a75d947141a9dc" + } + }, + "01836632a6df4912afad2f9c4017657b": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_5a5ce99041a64dd1af4fd284ae586c21", + "placeholder": "​", + "style": "IPY_MODEL_b80af0676343470daabf65245399b25e", + "value": "Downloading data: " + } + }, + "8117489f037b4384866a67905e74c2d0": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_556c537ed3c0439fb499c377b20afbc3", + "max": 1197, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_fae5be8f5c09460594e85f41bff86b6d", + "value": 1197 + } + }, + "1c729793ca7e463dbdc90c8cf47455f8": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_ab0a00e1d3fa4c6d8dac07a70c90a836", + "placeholder": "​", + "style": "IPY_MODEL_c24a7ccaa73c4f2696709b2a662d5bfb", + "value": " 2.60k/? [00:00<00:00, 132kB/s]" + } + }, + "679f4aef09934a8ca8a75d947141a9dc": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "5a5ce99041a64dd1af4fd284ae586c21": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "b80af0676343470daabf65245399b25e": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "556c537ed3c0439fb499c377b20afbc3": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "fae5be8f5c09460594e85f41bff86b6d": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "ab0a00e1d3fa4c6d8dac07a70c90a836": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "c24a7ccaa73c4f2696709b2a662d5bfb": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "02ad360d0cfe4ecc9715067a565713b4": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_bfc111d581064602a09d49154f7e5172", + "IPY_MODEL_58912d20fb9541bb8db8c44988139380", + "IPY_MODEL_6b55cdcace5e498f991f386c1f5d0ad1" + ], + "layout": "IPY_MODEL_3f90caaaa20a48eca11a789c5fdb95c6" + } + }, + "bfc111d581064602a09d49154f7e5172": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_522d6e8b00854fe88efb5335408ae2f6", + "placeholder": "​", + "style": "IPY_MODEL_ad3e5422528e4d7fb80c8b38b1a10d6c", + "value": "Generating train split: " + } + }, + "58912d20fb9541bb8db8c44988139380": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_00bab884601f4d75ae98cb54176b4a25", + "max": 1, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_637ec60542db4fc98bb1c6b4fbb8e3ab", + "value": 0 + } + }, + "6b55cdcace5e498f991f386c1f5d0ad1": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_1f5e60bff4664a198038177a70824a4a", + "placeholder": "​", + "style": "IPY_MODEL_4384c7bcc0614d179d4caddf99586f11", + "value": " 0/0 [00:00<?, ? examples/s]" + } + }, + "3f90caaaa20a48eca11a789c5fdb95c6": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "522d6e8b00854fe88efb5335408ae2f6": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "ad3e5422528e4d7fb80c8b38b1a10d6c": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "00bab884601f4d75ae98cb54176b4a25": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": "20px" + } + }, + "637ec60542db4fc98bb1c6b4fbb8e3ab": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "1f5e60bff4664a198038177a70824a4a": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "4384c7bcc0614d179d4caddf99586f11": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "f389408089b446cea6a6abeb0280077f": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_4a701270793c4c81aa925be73bc2eb9c", + "IPY_MODEL_d6e8ae396c8a4c3b91e4ed6222954df9", + "IPY_MODEL_619af3af32054c959301f532bc9d9885" + ], + "layout": "IPY_MODEL_deac353a58d0494c8337b7917bdd514c" + } + }, + "4a701270793c4c81aa925be73bc2eb9c": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_005d83d272e94146ad4321a078448cde", + "placeholder": "​", + "style": "IPY_MODEL_ed6879b4b7ca4452a254e909efd5f89e", + "value": "tokenizer_config.json: 100%" + } + }, + "d6e8ae396c8a4c3b91e4ed6222954df9": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_97c82d45b2ed4466ba3bcf7bb45a9cd7", + "max": 49, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_07898e7a93e04adeaf2a71fadce28ff1", + "value": 49 + } + }, + "619af3af32054c959301f532bc9d9885": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_3a8e883c994844c99ccd947a6dacc3d6", + "placeholder": "​", + "style": "IPY_MODEL_1d17bffc18b1446e9ed75c017be9e7cf", + "value": " 49.0/49.0 [00:00<00:00, 1.10kB/s]" + } + }, + "deac353a58d0494c8337b7917bdd514c": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "005d83d272e94146ad4321a078448cde": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "ed6879b4b7ca4452a254e909efd5f89e": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "97c82d45b2ed4466ba3bcf7bb45a9cd7": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "07898e7a93e04adeaf2a71fadce28ff1": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "3a8e883c994844c99ccd947a6dacc3d6": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "1d17bffc18b1446e9ed75c017be9e7cf": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "1f228c9e110f49828ea51c5413daada5": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_efb75e8ed80a4306a38bb251914d52a5", + "IPY_MODEL_cc26326f92db44089e30008a47dcd3b0", + "IPY_MODEL_2a4644b2c0f341449c27df29f19c881d" + ], + "layout": "IPY_MODEL_e8ae2554207e446bb0a3de7820b3bbc3" + } + }, + "efb75e8ed80a4306a38bb251914d52a5": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_8616186dba6b4bfbbaf2edbd596b1af6", + "placeholder": "​", + "style": "IPY_MODEL_0755f497006e4590bc7e9289be227e8f", + "value": "config.json: 100%" + } + }, + "cc26326f92db44089e30008a47dcd3b0": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_517e763031e54ef0bd5aec21ecc4fe56", + "max": 570, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_2143fcc44b724dca9bd2bd3d6dcd8987", + "value": 570 + } + }, + "2a4644b2c0f341449c27df29f19c881d": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_5d1334b421504f3c817d02d0fa103560", + "placeholder": "​", + "style": "IPY_MODEL_5f9aa47a7f534ce98618c4c857c06ff5", + "value": " 570/570 [00:00<00:00, 9.90kB/s]" + } + }, + "e8ae2554207e446bb0a3de7820b3bbc3": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "8616186dba6b4bfbbaf2edbd596b1af6": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "0755f497006e4590bc7e9289be227e8f": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "517e763031e54ef0bd5aec21ecc4fe56": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "2143fcc44b724dca9bd2bd3d6dcd8987": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "5d1334b421504f3c817d02d0fa103560": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "5f9aa47a7f534ce98618c4c857c06ff5": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "f155f4be298a404c86b9a3f3eb0084c1": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_29b1af6a59a141ae89f2f4626e55526c", + "IPY_MODEL_32bc5791a62d404ca33b4186ead41a7c", + "IPY_MODEL_15fe031101dc4bbfbfe92af8de95c3f3" + ], + "layout": "IPY_MODEL_f52cc0ed262c4645b15f10f630efaba1" + } + }, + "29b1af6a59a141ae89f2f4626e55526c": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_ca7304bbd1e74fa9bb6c092d548a900e", + "placeholder": "​", + "style": "IPY_MODEL_df78c2a44c0a4ee5ba64a175388b93d8", + "value": "vocab.txt: 100%" + } + }, + "32bc5791a62d404ca33b4186ead41a7c": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_ed007fa9be3e4e4fbb74e478d6e900ce", + "max": 213450, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_241614ecb85e44c9880be213d3d7aa8a", + "value": 213450 + } + }, + "15fe031101dc4bbfbfe92af8de95c3f3": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_032e7afa5e9048b49f659bd80c2142c2", + "placeholder": "​", + "style": "IPY_MODEL_719922b439c1430ab2f56a3409394bf4", + "value": " 213k/213k [00:00<00:00, 3.65MB/s]" + } + }, + "f52cc0ed262c4645b15f10f630efaba1": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "ca7304bbd1e74fa9bb6c092d548a900e": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "df78c2a44c0a4ee5ba64a175388b93d8": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "ed007fa9be3e4e4fbb74e478d6e900ce": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "241614ecb85e44c9880be213d3d7aa8a": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "032e7afa5e9048b49f659bd80c2142c2": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "719922b439c1430ab2f56a3409394bf4": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "863c8633201f4cffa59def928515ecb4": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_42c748d28ca44b849e3f321609ef4719", + "IPY_MODEL_d58612dcb0f549cfb17f76b97c9564f8", + "IPY_MODEL_756191f0482347c6922b68b9bb6bb7df" + ], + "layout": "IPY_MODEL_f8cde4f8b71141a388f4079bd06d24f4" + } + }, + "42c748d28ca44b849e3f321609ef4719": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_5adcb8e4effd478a996b5c36e7c192a5", + "placeholder": "​", + "style": "IPY_MODEL_237fbc217c064e059cb6a30aedeabdcd", + "value": "tokenizer.json: 100%" + } + }, + "d58612dcb0f549cfb17f76b97c9564f8": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_410ba645951c45d08f263ccaf5249f6b", + "max": 435797, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_7400dd30aecd4fc781de581fa1882b34", + "value": 435797 + } + }, + "756191f0482347c6922b68b9bb6bb7df": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_f197986eba244ca29b6745d7548137bc", + "placeholder": "​", + "style": "IPY_MODEL_3d0cb905d26f41f4a314310765e536f9", + "value": " 436k/436k [00:00<00:00, 7.35MB/s]" + } + }, + "f8cde4f8b71141a388f4079bd06d24f4": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "5adcb8e4effd478a996b5c36e7c192a5": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "237fbc217c064e059cb6a30aedeabdcd": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "410ba645951c45d08f263ccaf5249f6b": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "7400dd30aecd4fc781de581fa1882b34": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "f197986eba244ca29b6745d7548137bc": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "3d0cb905d26f41f4a314310765e536f9": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "d4e291984f904fd78a84d9a0a4551d52": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_ce51d2d4264d4e42ab9eb8553109d38b", + "IPY_MODEL_cbe6b5526b3d439395caba7e891bfb3a", + "IPY_MODEL_1c5a96809a774a488e6a7a220fb42982" + ], + "layout": "IPY_MODEL_9fd5751e25cb458aab8e27c4fc8f7e4c" + } + }, + "ce51d2d4264d4e42ab9eb8553109d38b": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_003d6431121947b1a779f873109ac37c", + "placeholder": "​", + "style": "IPY_MODEL_02a6d286dcfa4e70a84a5bfb1b0457e5", + "value": "tokenizer_config.json: 100%" + } + }, + "cbe6b5526b3d439395caba7e891bfb3a": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_5d76554fb84549c7aa469e63473bebf5", + "max": 29, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_75e4faf8c59b4b7e8e0b390f55f52bce", + "value": 29 + } + }, + "1c5a96809a774a488e6a7a220fb42982": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_f472485d9f764334a6aef1e0da30ca4a", + "placeholder": "​", + "style": "IPY_MODEL_070fcaf85b38416294c8063e654fe73c", + "value": " 29.0/29.0 [00:00<00:00, 305B/s]" + } + }, + "9fd5751e25cb458aab8e27c4fc8f7e4c": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "003d6431121947b1a779f873109ac37c": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "02a6d286dcfa4e70a84a5bfb1b0457e5": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "5d76554fb84549c7aa469e63473bebf5": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "75e4faf8c59b4b7e8e0b390f55f52bce": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "f472485d9f764334a6aef1e0da30ca4a": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "070fcaf85b38416294c8063e654fe73c": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "cccba522e3344508a7b4fa24fe443fd2": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_b5b1fba3c36540b4b4c18e3b45b37610", + "IPY_MODEL_bd627d9ca0d540a0bc242c10847f15ec", + "IPY_MODEL_159db52e733145bcbd2e9f5548c6d0d8" + ], + "layout": "IPY_MODEL_2c349b27546f496898d74b1b07268c29" + } + }, + "b5b1fba3c36540b4b4c18e3b45b37610": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_ad51994c6bd2451fab369ef9fd25daca", + "placeholder": "​", + "style": "IPY_MODEL_36448804fdde4cbdb76288c3ed350fbf", + "value": "config.json: 100%" + } + }, + "bd627d9ca0d540a0bc242c10847f15ec": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_651c622958b7496da2da5f119a620441", + "max": 465, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_3e8769a56037401fb323168807c76b82", + "value": 465 + } + }, + "159db52e733145bcbd2e9f5548c6d0d8": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_5d1f1e6cb3ca44589b6009e6444217e7", + "placeholder": "​", + "style": "IPY_MODEL_1e586da57bc148e58296366431ceeb7b", + "value": " 465/465 [00:00<00:00, 6.91kB/s]" + } + }, + "2c349b27546f496898d74b1b07268c29": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "ad51994c6bd2451fab369ef9fd25daca": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "36448804fdde4cbdb76288c3ed350fbf": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "651c622958b7496da2da5f119a620441": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "3e8769a56037401fb323168807c76b82": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "5d1f1e6cb3ca44589b6009e6444217e7": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "1e586da57bc148e58296366431ceeb7b": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "a77784fba4e14d3dbd4ddab0ceec54db": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_4316d594308b43328a2e78540c23e8aa", + "IPY_MODEL_e81f37f28f9741f1ab897e9ec2bf2438", + "IPY_MODEL_f4f2a6ab1bb5482a877eb8a86caa5749" + ], + "layout": "IPY_MODEL_b34217dccb3442ef89527e7663257309" + } + }, + "4316d594308b43328a2e78540c23e8aa": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_e6a95656af9b4a8bade2c5d36e3573cf", + "placeholder": "​", + "style": "IPY_MODEL_dc6abb36e28e4195bb05ea7495e73bb4", + "value": "vocab.txt: 100%" + } + }, + "e81f37f28f9741f1ab897e9ec2bf2438": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_6f44cb2d088d4eb5937855534e1653eb", + "max": 213450, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_1bfd9a71424540b0ba946cc76db40a82", + "value": 213450 + } + }, + "f4f2a6ab1bb5482a877eb8a86caa5749": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_9491205b90b54610a98d37c3f7ef4f48", + "placeholder": "​", + "style": "IPY_MODEL_024967e89e104a638fa8605abe2ea75b", + "value": " 213k/213k [00:00<00:00, 2.90MB/s]" + } + }, + "b34217dccb3442ef89527e7663257309": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "e6a95656af9b4a8bade2c5d36e3573cf": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "dc6abb36e28e4195bb05ea7495e73bb4": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "6f44cb2d088d4eb5937855534e1653eb": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "1bfd9a71424540b0ba946cc76db40a82": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "9491205b90b54610a98d37c3f7ef4f48": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "024967e89e104a638fa8605abe2ea75b": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "79abb647d6d346ada94e3f8013d474dc": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_ae191c8cf576496ca5f4f199f602c359", + "IPY_MODEL_75a3ae78957b47aa9ec6561b16c8f953", + "IPY_MODEL_9e32dc3e0e7e41dfa635520f8b09a911" + ], + "layout": "IPY_MODEL_33879455bc574b5bbff364e7128feebe" + } + }, + "ae191c8cf576496ca5f4f199f602c359": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_71f5b93b183f49638874d5b8a4d4e843", + "placeholder": "​", + "style": "IPY_MODEL_3c1209173ad84ec69e0645686673079c", + "value": "tokenizer.json: 100%" + } + }, + "75a3ae78957b47aa9ec6561b16c8f953": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_6e73e2de10314726971709c21138273b", + "max": 435797, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_07bdf1522c844f90bc653beac6d40187", + "value": 435797 + } + }, + "9e32dc3e0e7e41dfa635520f8b09a911": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_67e128a70e494585a5cb1726eb17baba", + "placeholder": "​", + "style": "IPY_MODEL_6add237936dc40fbb72486729d254560", + "value": " 436k/436k [00:00<00:00, 5.97MB/s]" + } + }, + "33879455bc574b5bbff364e7128feebe": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "71f5b93b183f49638874d5b8a4d4e843": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "3c1209173ad84ec69e0645686673079c": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "6e73e2de10314726971709c21138273b": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "07bdf1522c844f90bc653beac6d40187": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "67e128a70e494585a5cb1726eb17baba": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "6add237936dc40fbb72486729d254560": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + } + } + } + }, + "cells": [ + { + "cell_type": "markdown", + "metadata": { + "id": "view-in-github", + "colab_type": "text" + }, + "source": [ + "\"Open" + ] + }, + { + "cell_type": "code", + "source": [ + "import pandas as pd\n", + "import numpy as np" + ], + "metadata": { + "id": "8P6sy_6dj3h6" + }, + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "code", + "source": [ + "\n", + "import string\n", + "\n", + "import nltk\n", + "from nltk.corpus import stopwords\n", + "\n", + "nltk.download('stopwords')\n", + "nltk.download('punkt')\n", + "\n", + "def remove_punctuation_and_stopwords(sent):\n", + " # Remove punctuation\n", + " sent = sent.translate(str.maketrans('', '', string.punctuation))\n", + "\n", + " # Tokenize the sentence\n", + " tokens = nltk.word_tokenize(sent)\n", + "\n", + " # Remove stop words\n", + " stop_words = set(stopwords.words('english'))\n", + " tokens = [token for token in tokens if token.lower() not in stop_words]\n", + "\n", + " # Join the tokens back into a sentence\n", + " sent = ' '.join(tokens)\n", + "\n", + " return sent\n", + "\n", + "# Example usage\n", + "sent = \"This is a sentence. It has punctuation and stop words.\"\n", + "sent = remove_punctuation_and_stopwords(sent)\n", + "print(sent) # Output: \"sentence punctuation stop words\"\n" + ], + "metadata": { + "id": "mW2iNa0aMMJ6" + }, + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "code", + "source": [ + "!pip install datasets evaluate seqeval" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "Vc1laayhjVbR", + "outputId": "3091efd6-7c4d-4578-9a13-81094aa4d8ff" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Requirement already satisfied: datasets in /usr/local/lib/python3.10/dist-packages (2.18.0)\n", + "Requirement already satisfied: evaluate in /usr/local/lib/python3.10/dist-packages (0.4.1)\n", + "Requirement already satisfied: seqeval in /usr/local/lib/python3.10/dist-packages (1.2.2)\n", + "Requirement already satisfied: filelock in /usr/local/lib/python3.10/dist-packages (from datasets) (3.13.3)\n", + "Requirement already satisfied: numpy>=1.17 in /usr/local/lib/python3.10/dist-packages (from datasets) (1.25.2)\n", + "Requirement already satisfied: pyarrow>=12.0.0 in /usr/local/lib/python3.10/dist-packages (from datasets) (14.0.2)\n", + "Requirement already satisfied: pyarrow-hotfix in /usr/local/lib/python3.10/dist-packages (from datasets) (0.6)\n", + "Requirement already satisfied: dill<0.3.9,>=0.3.0 in /usr/local/lib/python3.10/dist-packages (from datasets) (0.3.8)\n", + "Requirement already satisfied: pandas in /usr/local/lib/python3.10/dist-packages (from datasets) (1.5.3)\n", + "Requirement already satisfied: requests>=2.19.0 in /usr/local/lib/python3.10/dist-packages (from datasets) (2.31.0)\n", + "Requirement already satisfied: tqdm>=4.62.1 in /usr/local/lib/python3.10/dist-packages (from datasets) (4.66.2)\n", + "Requirement already satisfied: xxhash in /usr/local/lib/python3.10/dist-packages (from datasets) (3.4.1)\n", + "Requirement already satisfied: multiprocess in /usr/local/lib/python3.10/dist-packages (from datasets) (0.70.16)\n", + "Requirement already satisfied: fsspec[http]<=2024.2.0,>=2023.1.0 in /usr/local/lib/python3.10/dist-packages (from datasets) (2023.6.0)\n", + "Requirement already satisfied: aiohttp in /usr/local/lib/python3.10/dist-packages (from datasets) (3.9.3)\n", + "Requirement already satisfied: huggingface-hub>=0.19.4 in /usr/local/lib/python3.10/dist-packages (from datasets) (0.20.3)\n", + "Requirement already satisfied: packaging in /usr/local/lib/python3.10/dist-packages (from datasets) (24.0)\n", + "Requirement already satisfied: pyyaml>=5.1 in /usr/local/lib/python3.10/dist-packages (from datasets) (6.0.1)\n", + "Requirement already satisfied: responses<0.19 in /usr/local/lib/python3.10/dist-packages (from evaluate) (0.18.0)\n", + "Requirement already satisfied: scikit-learn>=0.21.3 in /usr/local/lib/python3.10/dist-packages (from seqeval) (1.2.2)\n", + "Requirement already satisfied: aiosignal>=1.1.2 in /usr/local/lib/python3.10/dist-packages (from aiohttp->datasets) (1.3.1)\n", + "Requirement already satisfied: attrs>=17.3.0 in /usr/local/lib/python3.10/dist-packages (from aiohttp->datasets) (23.2.0)\n", + "Requirement already satisfied: frozenlist>=1.1.1 in /usr/local/lib/python3.10/dist-packages (from aiohttp->datasets) (1.4.1)\n", + "Requirement already satisfied: multidict<7.0,>=4.5 in /usr/local/lib/python3.10/dist-packages (from aiohttp->datasets) (6.0.5)\n", + "Requirement already satisfied: yarl<2.0,>=1.0 in /usr/local/lib/python3.10/dist-packages (from aiohttp->datasets) (1.9.4)\n", + "Requirement already satisfied: async-timeout<5.0,>=4.0 in /usr/local/lib/python3.10/dist-packages (from aiohttp->datasets) (4.0.3)\n", + "Requirement already satisfied: typing-extensions>=3.7.4.3 in /usr/local/lib/python3.10/dist-packages (from huggingface-hub>=0.19.4->datasets) (4.10.0)\n", + "Requirement already satisfied: charset-normalizer<4,>=2 in /usr/local/lib/python3.10/dist-packages (from requests>=2.19.0->datasets) (3.3.2)\n", + "Requirement already satisfied: idna<4,>=2.5 in /usr/local/lib/python3.10/dist-packages (from requests>=2.19.0->datasets) (3.6)\n", + "Requirement already satisfied: urllib3<3,>=1.21.1 in /usr/local/lib/python3.10/dist-packages (from requests>=2.19.0->datasets) (1.26.18)\n", + "Requirement already satisfied: certifi>=2017.4.17 in /usr/local/lib/python3.10/dist-packages (from requests>=2.19.0->datasets) (2024.2.2)\n", + "Requirement already satisfied: scipy>=1.3.2 in /usr/local/lib/python3.10/dist-packages (from scikit-learn>=0.21.3->seqeval) (1.11.4)\n", + "Requirement already satisfied: joblib>=1.1.1 in /usr/local/lib/python3.10/dist-packages (from scikit-learn>=0.21.3->seqeval) (1.3.2)\n", + "Requirement already satisfied: threadpoolctl>=2.0.0 in /usr/local/lib/python3.10/dist-packages (from scikit-learn>=0.21.3->seqeval) (3.4.0)\n", + "Requirement already satisfied: python-dateutil>=2.8.1 in /usr/local/lib/python3.10/dist-packages (from pandas->datasets) (2.8.2)\n", + "Requirement already satisfied: pytz>=2020.1 in /usr/local/lib/python3.10/dist-packages (from pandas->datasets) (2023.4)\n", + "Requirement already satisfied: six>=1.5 in /usr/local/lib/python3.10/dist-packages (from python-dateutil>=2.8.1->pandas->datasets) (1.16.0)\n" + ] + } + ] + }, + { + "cell_type": "code", + "source": [ + "! pip install -U accelerate\n", + "! pip install -U transformers" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "E2auT9Ka7Ebb", + "outputId": "db0658b6-e7c5-4cca-b6fc-162de0d6130c" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Requirement already satisfied: accelerate in /usr/local/lib/python3.10/dist-packages (0.28.0)\n", + "Requirement already satisfied: numpy>=1.17 in /usr/local/lib/python3.10/dist-packages (from accelerate) (1.25.2)\n", + "Requirement already satisfied: packaging>=20.0 in /usr/local/lib/python3.10/dist-packages (from accelerate) (24.0)\n", + "Requirement already satisfied: psutil in /usr/local/lib/python3.10/dist-packages (from accelerate) (5.9.5)\n", + "Requirement already satisfied: pyyaml in /usr/local/lib/python3.10/dist-packages (from accelerate) (6.0.1)\n", + "Requirement already satisfied: torch>=1.10.0 in /usr/local/lib/python3.10/dist-packages (from accelerate) (2.2.1+cu121)\n", + "Requirement already satisfied: huggingface-hub in /usr/local/lib/python3.10/dist-packages (from accelerate) (0.20.3)\n", + "Requirement already satisfied: safetensors>=0.3.1 in /usr/local/lib/python3.10/dist-packages (from accelerate) (0.4.2)\n", + "Requirement already satisfied: filelock in /usr/local/lib/python3.10/dist-packages (from torch>=1.10.0->accelerate) (3.13.3)\n", + "Requirement already satisfied: typing-extensions>=4.8.0 in /usr/local/lib/python3.10/dist-packages (from torch>=1.10.0->accelerate) (4.10.0)\n", + "Requirement already satisfied: sympy in /usr/local/lib/python3.10/dist-packages (from torch>=1.10.0->accelerate) (1.12)\n", + "Requirement already satisfied: networkx in /usr/local/lib/python3.10/dist-packages (from torch>=1.10.0->accelerate) (3.2.1)\n", + "Requirement already satisfied: jinja2 in /usr/local/lib/python3.10/dist-packages (from torch>=1.10.0->accelerate) (3.1.3)\n", + "Requirement already satisfied: fsspec in /usr/local/lib/python3.10/dist-packages (from torch>=1.10.0->accelerate) (2023.6.0)\n", + "Requirement already satisfied: nvidia-cuda-nvrtc-cu12==12.1.105 in /usr/local/lib/python3.10/dist-packages (from torch>=1.10.0->accelerate) (12.1.105)\n", + "Requirement already satisfied: nvidia-cuda-runtime-cu12==12.1.105 in /usr/local/lib/python3.10/dist-packages (from torch>=1.10.0->accelerate) (12.1.105)\n", + "Requirement already satisfied: nvidia-cuda-cupti-cu12==12.1.105 in /usr/local/lib/python3.10/dist-packages (from torch>=1.10.0->accelerate) (12.1.105)\n", + "Requirement already satisfied: nvidia-cudnn-cu12==8.9.2.26 in /usr/local/lib/python3.10/dist-packages (from torch>=1.10.0->accelerate) (8.9.2.26)\n", + "Requirement already satisfied: nvidia-cublas-cu12==12.1.3.1 in /usr/local/lib/python3.10/dist-packages (from torch>=1.10.0->accelerate) (12.1.3.1)\n", + "Requirement already satisfied: nvidia-cufft-cu12==11.0.2.54 in /usr/local/lib/python3.10/dist-packages (from torch>=1.10.0->accelerate) (11.0.2.54)\n", + "Requirement already satisfied: nvidia-curand-cu12==10.3.2.106 in /usr/local/lib/python3.10/dist-packages (from torch>=1.10.0->accelerate) (10.3.2.106)\n", + "Requirement already satisfied: nvidia-cusolver-cu12==11.4.5.107 in /usr/local/lib/python3.10/dist-packages (from torch>=1.10.0->accelerate) (11.4.5.107)\n", + "Requirement already satisfied: nvidia-cusparse-cu12==12.1.0.106 in /usr/local/lib/python3.10/dist-packages (from torch>=1.10.0->accelerate) (12.1.0.106)\n", + "Requirement already satisfied: nvidia-nccl-cu12==2.19.3 in /usr/local/lib/python3.10/dist-packages (from torch>=1.10.0->accelerate) (2.19.3)\n", + "Requirement already satisfied: nvidia-nvtx-cu12==12.1.105 in /usr/local/lib/python3.10/dist-packages (from torch>=1.10.0->accelerate) (12.1.105)\n", + "Requirement already satisfied: triton==2.2.0 in /usr/local/lib/python3.10/dist-packages (from torch>=1.10.0->accelerate) (2.2.0)\n", + "Requirement already satisfied: nvidia-nvjitlink-cu12 in /usr/local/lib/python3.10/dist-packages (from nvidia-cusolver-cu12==11.4.5.107->torch>=1.10.0->accelerate) (12.4.99)\n", + "Requirement already satisfied: requests in /usr/local/lib/python3.10/dist-packages (from huggingface-hub->accelerate) (2.31.0)\n", + "Requirement already satisfied: tqdm>=4.42.1 in /usr/local/lib/python3.10/dist-packages (from huggingface-hub->accelerate) (4.66.2)\n", + "Requirement already satisfied: MarkupSafe>=2.0 in /usr/local/lib/python3.10/dist-packages (from jinja2->torch>=1.10.0->accelerate) (2.1.5)\n", + "Requirement already satisfied: charset-normalizer<4,>=2 in /usr/local/lib/python3.10/dist-packages (from requests->huggingface-hub->accelerate) (3.3.2)\n", + "Requirement already satisfied: idna<4,>=2.5 in /usr/local/lib/python3.10/dist-packages (from requests->huggingface-hub->accelerate) (3.6)\n", + "Requirement already satisfied: urllib3<3,>=1.21.1 in /usr/local/lib/python3.10/dist-packages (from requests->huggingface-hub->accelerate) (1.26.18)\n", + "Requirement already satisfied: certifi>=2017.4.17 in /usr/local/lib/python3.10/dist-packages (from requests->huggingface-hub->accelerate) (2024.2.2)\n", + "Requirement already satisfied: mpmath>=0.19 in /usr/local/lib/python3.10/dist-packages (from sympy->torch>=1.10.0->accelerate) (1.3.0)\n", + "Requirement already satisfied: transformers in /usr/local/lib/python3.10/dist-packages (4.39.2)\n", + "Requirement already satisfied: filelock in /usr/local/lib/python3.10/dist-packages (from transformers) (3.13.3)\n", + "Requirement already satisfied: huggingface-hub<1.0,>=0.19.3 in /usr/local/lib/python3.10/dist-packages (from transformers) (0.20.3)\n", + "Requirement already satisfied: numpy>=1.17 in /usr/local/lib/python3.10/dist-packages (from transformers) (1.25.2)\n", + "Requirement already satisfied: packaging>=20.0 in /usr/local/lib/python3.10/dist-packages (from transformers) (24.0)\n", + "Requirement already satisfied: pyyaml>=5.1 in /usr/local/lib/python3.10/dist-packages (from transformers) (6.0.1)\n", + "Requirement already satisfied: regex!=2019.12.17 in /usr/local/lib/python3.10/dist-packages (from transformers) (2023.12.25)\n", + "Requirement already satisfied: requests in /usr/local/lib/python3.10/dist-packages (from transformers) (2.31.0)\n", + "Requirement already satisfied: tokenizers<0.19,>=0.14 in /usr/local/lib/python3.10/dist-packages (from transformers) (0.15.2)\n", + "Requirement already satisfied: safetensors>=0.4.1 in /usr/local/lib/python3.10/dist-packages (from transformers) (0.4.2)\n", + "Requirement already satisfied: tqdm>=4.27 in /usr/local/lib/python3.10/dist-packages (from transformers) (4.66.2)\n", + "Requirement already satisfied: fsspec>=2023.5.0 in /usr/local/lib/python3.10/dist-packages (from huggingface-hub<1.0,>=0.19.3->transformers) (2023.6.0)\n", + "Requirement already satisfied: typing-extensions>=3.7.4.3 in /usr/local/lib/python3.10/dist-packages (from huggingface-hub<1.0,>=0.19.3->transformers) (4.10.0)\n", + "Requirement already satisfied: charset-normalizer<4,>=2 in /usr/local/lib/python3.10/dist-packages (from requests->transformers) (3.3.2)\n", + "Requirement already satisfied: idna<4,>=2.5 in /usr/local/lib/python3.10/dist-packages (from requests->transformers) (3.6)\n", + "Requirement already satisfied: urllib3<3,>=1.21.1 in /usr/local/lib/python3.10/dist-packages (from requests->transformers) (1.26.18)\n", + "Requirement already satisfied: certifi>=2017.4.17 in /usr/local/lib/python3.10/dist-packages (from requests->transformers) (2024.2.2)\n" + ] + } + ] + }, + { + "cell_type": "markdown", + "source": [ + "### Login to huggingface_hub" + ], + "metadata": { + "id": "dlQrP9uuln_d" + } + }, + { + "cell_type": "code", + "source": [ + "from huggingface_hub import notebook_login\n", + "notebook_login()" + ], + "metadata": { + "id": "dcolxhYClPl3", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 145, + "referenced_widgets": [ + "014c9bc0a96c4d84b591680bc0ea9cd1", + "e01913638285433a8a88f0897c5cdfb7", + "00e7c403fbd648c685a52fabf0fefd4d", + "7327ec8d378a4701887c264ed47c273e", + "3a123190eee84f24971fe70989a2cc30", + "e8052b48b5d64f17825e561a1cb07808", + "0280f5e1b3f54bf08ab3fe4f589d6cf0", + "120995429b8f4bb8a5d6d4c8eaab72e9", + "d486b8c62a354b17a757080a11785083", + "168b61613e974caa997569ade26b92ba", + "05bcb25b4ef54690ba04ad44007c8512", + "66d68f31077946feaa68c8dad57520d2", + "8226dbc61bb34fc4986d2e911334e901", + "c461783efe6344dca6b6424ddd7eb764", + "da250f704a484cda835aba323145a672", + "14f09b9a26a6417a9b8afd6250e98390", + "b3bf77c2b62342838a90e7f6219a9fcb", + "56bb71ac717346e19ba77745abc27d63", + "9c329d920dc54c67ad1c4ddbf7a1f1c3", + "0014505744504ada8af612225f0c6a1e", + "c5e868801cee452996340508fbb75d7c", + "1399178c2ff14e3a9ba8bf346edd6aff", + "3a8d6eb73f4248e2a959bc55a2df77df", + "daef153e621e40a2a87e03bf68fe68bc", + "aa67c01a38ee4802a238ec310dc6b5ae", + "a4f2365752e1445ba2970cfaaf617c8e", + "9776fdf7be9c4297b156dfe7cf4616a1", + "26307b61c47544319d0df63fcb84da7f", + "27be0374cc9640a3b39ab23d82ac7654", + "330cf889c0bf431f9363d97737bc81e2", + "e32d681198ef44f6b0af0d8c64eaa678", + "1fe85d9e150844749000b3a8822b5a23" + ] + }, + "outputId": "558d62c3-1042-4a22-d007-9a942c67b188" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": [ + "VBox(children=(HTML(value='
1743\u001b[0;31m \u001b[0mexample\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0minfo\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mfeatures\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mencode_example\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mrecord\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0minfo\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mfeatures\u001b[0m \u001b[0;32mis\u001b[0m \u001b[0;32mnot\u001b[0m \u001b[0;32mNone\u001b[0m \u001b[0;32melse\u001b[0m \u001b[0mrecord\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 1744\u001b[0m \u001b[0mwriter\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mwrite\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mexample\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mkey\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m/usr/local/lib/python3.10/dist-packages/datasets/features/features.py\u001b[0m in \u001b[0;36mencode_example\u001b[0;34m(self, example)\u001b[0m\n\u001b[1;32m 1888\u001b[0m \u001b[0mexample\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mcast_to_python_objects\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mexample\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 1889\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0mencode_nested_example\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mexample\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 1890\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m/usr/local/lib/python3.10/dist-packages/datasets/features/features.py\u001b[0m in \u001b[0;36mencode_nested_example\u001b[0;34m(schema, obj, level)\u001b[0m\n\u001b[1;32m 1243\u001b[0m return (\n\u001b[0;32m-> 1244\u001b[0;31m \u001b[0;34m{\u001b[0m\u001b[0mk\u001b[0m\u001b[0;34m:\u001b[0m \u001b[0mencode_nested_example\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mschema\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mk\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mobj\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mget\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mk\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mlevel\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mlevel\u001b[0m \u001b[0;34m+\u001b[0m \u001b[0;36m1\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;32mfor\u001b[0m \u001b[0mk\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mschema\u001b[0m\u001b[0;34m}\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 1245\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mobj\u001b[0m \u001b[0;32mis\u001b[0m \u001b[0;32mnot\u001b[0m \u001b[0;32mNone\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m/usr/local/lib/python3.10/dist-packages/datasets/features/features.py\u001b[0m in \u001b[0;36m\u001b[0;34m(.0)\u001b[0m\n\u001b[1;32m 1243\u001b[0m return (\n\u001b[0;32m-> 1244\u001b[0;31m \u001b[0;34m{\u001b[0m\u001b[0mk\u001b[0m\u001b[0;34m:\u001b[0m \u001b[0mencode_nested_example\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mschema\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mk\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mobj\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mget\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mk\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mlevel\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mlevel\u001b[0m \u001b[0;34m+\u001b[0m \u001b[0;36m1\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;32mfor\u001b[0m \u001b[0mk\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mschema\u001b[0m\u001b[0;34m}\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 1245\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mobj\u001b[0m \u001b[0;32mis\u001b[0m \u001b[0;32mnot\u001b[0m \u001b[0;32mNone\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m/usr/local/lib/python3.10/dist-packages/datasets/features/features.py\u001b[0m in \u001b[0;36mencode_nested_example\u001b[0;34m(schema, obj, level)\u001b[0m\n\u001b[1;32m 1294\u001b[0m ):\n\u001b[0;32m-> 1295\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0;34m[\u001b[0m\u001b[0mencode_nested_example\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mschema\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mfeature\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mo\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mlevel\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mlevel\u001b[0m \u001b[0;34m+\u001b[0m \u001b[0;36m1\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;32mfor\u001b[0m \u001b[0mo\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mobj\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 1296\u001b[0m \u001b[0;32mreturn\u001b[0m \u001b[0mlist\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mobj\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m/usr/local/lib/python3.10/dist-packages/datasets/features/features.py\u001b[0m in \u001b[0;36m\u001b[0;34m(.0)\u001b[0m\n\u001b[1;32m 1294\u001b[0m ):\n\u001b[0;32m-> 1295\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0;34m[\u001b[0m\u001b[0mencode_nested_example\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mschema\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mfeature\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mo\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mlevel\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mlevel\u001b[0m \u001b[0;34m+\u001b[0m \u001b[0;36m1\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;32mfor\u001b[0m \u001b[0mo\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mobj\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 1296\u001b[0m \u001b[0;32mreturn\u001b[0m \u001b[0mlist\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mobj\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m/usr/local/lib/python3.10/dist-packages/datasets/features/features.py\u001b[0m in \u001b[0;36mencode_nested_example\u001b[0;34m(schema, obj, level)\u001b[0m\n\u001b[1;32m 1299\u001b[0m \u001b[0;32melif\u001b[0m \u001b[0misinstance\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mschema\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m(\u001b[0m\u001b[0mAudio\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mImage\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mClassLabel\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mTranslationVariableLanguages\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mValue\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0m_ArrayXD\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 1300\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0mschema\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mencode_example\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mobj\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mobj\u001b[0m \u001b[0;32mis\u001b[0m \u001b[0;32mnot\u001b[0m \u001b[0;32mNone\u001b[0m \u001b[0;32melse\u001b[0m \u001b[0;32mNone\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 1301\u001b[0m \u001b[0;31m# Other object should be directly convertible to a native Arrow type (like Translation and Translation)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m/usr/local/lib/python3.10/dist-packages/datasets/features/features.py\u001b[0m in \u001b[0;36mencode_example\u001b[0;34m(self, example_data)\u001b[0m\n\u001b[1;32m 1089\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0misinstance\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mexample_data\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mstr\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 1090\u001b[0;31m \u001b[0mexample_data\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mstr2int\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mexample_data\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 1091\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m/usr/local/lib/python3.10/dist-packages/datasets/features/features.py\u001b[0m in \u001b[0;36mstr2int\u001b[0;34m(self, values)\u001b[0m\n\u001b[1;32m 1026\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 1027\u001b[0;31m \u001b[0moutput\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;34m[\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_strval2int\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mvalue\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;32mfor\u001b[0m \u001b[0mvalue\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mvalues\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 1028\u001b[0m \u001b[0;32mreturn\u001b[0m \u001b[0moutput\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mreturn_list\u001b[0m \u001b[0;32melse\u001b[0m \u001b[0moutput\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;36m0\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m/usr/local/lib/python3.10/dist-packages/datasets/features/features.py\u001b[0m in \u001b[0;36m\u001b[0;34m(.0)\u001b[0m\n\u001b[1;32m 1026\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 1027\u001b[0;31m \u001b[0moutput\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;34m[\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_strval2int\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mvalue\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;32mfor\u001b[0m \u001b[0mvalue\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mvalues\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 1028\u001b[0m \u001b[0;32mreturn\u001b[0m \u001b[0moutput\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mreturn_list\u001b[0m \u001b[0;32melse\u001b[0m \u001b[0moutput\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;36m0\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m/usr/local/lib/python3.10/dist-packages/datasets/features/features.py\u001b[0m in \u001b[0;36m_strval2int\u001b[0;34m(self, value)\u001b[0m\n\u001b[1;32m 1047\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mfailed_parse\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 1048\u001b[0;31m \u001b[0;32mraise\u001b[0m \u001b[0mValueError\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34mf\"Invalid string class label {value}\"\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 1049\u001b[0m \u001b[0;32mreturn\u001b[0m \u001b[0mint_value\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;31mValueError\u001b[0m: Invalid string class label B-GCNUM", + "\nThe above exception was the direct cause of the following exception:\n", + "\u001b[0;31mDatasetGenerationError\u001b[0m Traceback (most recent call last)", + "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m()\u001b[0m\n\u001b[1;32m 1\u001b[0m \u001b[0;32mfrom\u001b[0m \u001b[0mdatasets\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mload_dataset\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 2\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 3\u001b[0;31m \u001b[0mshipping_labels\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mload_dataset\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m\"harsh13333/shipping_label_ner\"\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mtrust_remote_code\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;32mTrue\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m", + "\u001b[0;32m/usr/local/lib/python3.10/dist-packages/datasets/load.py\u001b[0m in \u001b[0;36mload_dataset\u001b[0;34m(path, name, data_dir, data_files, split, cache_dir, features, download_config, download_mode, verification_mode, ignore_verifications, keep_in_memory, save_infos, revision, token, use_auth_token, task, streaming, num_proc, storage_options, trust_remote_code, **config_kwargs)\u001b[0m\n\u001b[1;32m 2580\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 2581\u001b[0m \u001b[0;31m# Download and prepare data\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 2582\u001b[0;31m builder_instance.download_and_prepare(\n\u001b[0m\u001b[1;32m 2583\u001b[0m \u001b[0mdownload_config\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mdownload_config\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 2584\u001b[0m \u001b[0mdownload_mode\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mdownload_mode\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m/usr/local/lib/python3.10/dist-packages/datasets/builder.py\u001b[0m in \u001b[0;36mdownload_and_prepare\u001b[0;34m(self, output_dir, download_config, download_mode, verification_mode, ignore_verifications, try_from_hf_gcs, dl_manager, base_path, use_auth_token, file_format, max_shard_size, num_proc, storage_options, **download_and_prepare_kwargs)\u001b[0m\n\u001b[1;32m 1003\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mnum_proc\u001b[0m \u001b[0;32mis\u001b[0m \u001b[0;32mnot\u001b[0m \u001b[0;32mNone\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1004\u001b[0m \u001b[0mprepare_split_kwargs\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m\"num_proc\"\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mnum_proc\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 1005\u001b[0;31m self._download_and_prepare(\n\u001b[0m\u001b[1;32m 1006\u001b[0m \u001b[0mdl_manager\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mdl_manager\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1007\u001b[0m \u001b[0mverification_mode\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mverification_mode\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m/usr/local/lib/python3.10/dist-packages/datasets/builder.py\u001b[0m in \u001b[0;36m_download_and_prepare\u001b[0;34m(self, dl_manager, verification_mode, **prepare_splits_kwargs)\u001b[0m\n\u001b[1;32m 1765\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1766\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0m_download_and_prepare\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mdl_manager\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mverification_mode\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mprepare_splits_kwargs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 1767\u001b[0;31m super()._download_and_prepare(\n\u001b[0m\u001b[1;32m 1768\u001b[0m \u001b[0mdl_manager\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1769\u001b[0m \u001b[0mverification_mode\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m/usr/local/lib/python3.10/dist-packages/datasets/builder.py\u001b[0m in \u001b[0;36m_download_and_prepare\u001b[0;34m(self, dl_manager, verification_mode, **prepare_split_kwargs)\u001b[0m\n\u001b[1;32m 1098\u001b[0m \u001b[0;32mtry\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1099\u001b[0m \u001b[0;31m# Prepare split will record examples associated to the split\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 1100\u001b[0;31m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_prepare_split\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0msplit_generator\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mprepare_split_kwargs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 1101\u001b[0m \u001b[0;32mexcept\u001b[0m \u001b[0mOSError\u001b[0m \u001b[0;32mas\u001b[0m \u001b[0me\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1102\u001b[0m raise OSError(\n", + "\u001b[0;32m/usr/local/lib/python3.10/dist-packages/datasets/builder.py\u001b[0m in \u001b[0;36m_prepare_split\u001b[0;34m(self, split_generator, check_duplicate_keys, file_format, num_proc, max_shard_size)\u001b[0m\n\u001b[1;32m 1603\u001b[0m \u001b[0mjob_id\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;36m0\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1604\u001b[0m \u001b[0;32mwith\u001b[0m \u001b[0mpbar\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 1605\u001b[0;31m for job_id, done, content in self._prepare_split_single(\n\u001b[0m\u001b[1;32m 1606\u001b[0m \u001b[0mgen_kwargs\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mgen_kwargs\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mjob_id\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mjob_id\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0m_prepare_split_args\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1607\u001b[0m ):\n", + "\u001b[0;32m/usr/local/lib/python3.10/dist-packages/datasets/builder.py\u001b[0m in \u001b[0;36m_prepare_split_single\u001b[0;34m(self, gen_kwargs, fpath, file_format, max_shard_size, split_info, check_duplicate_keys, job_id)\u001b[0m\n\u001b[1;32m 1760\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0misinstance\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0me\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mSchemaInferenceError\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;32mand\u001b[0m \u001b[0me\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m__context__\u001b[0m \u001b[0;32mis\u001b[0m \u001b[0;32mnot\u001b[0m \u001b[0;32mNone\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1761\u001b[0m \u001b[0me\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0me\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m__context__\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 1762\u001b[0;31m \u001b[0;32mraise\u001b[0m \u001b[0mDatasetGenerationError\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m\"An error occurred while generating the dataset\"\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;32mfrom\u001b[0m \u001b[0me\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 1763\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1764\u001b[0m \u001b[0;32myield\u001b[0m \u001b[0mjob_id\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;32mTrue\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m(\u001b[0m\u001b[0mtotal_num_examples\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mtotal_num_bytes\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mwriter\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_features\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mnum_shards\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mshard_lengths\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;31mDatasetGenerationError\u001b[0m: An error occurred while generating the dataset" + ] + } + ] + }, + { + "cell_type": "markdown", + "source": [ + "### explore the data" + ], + "metadata": { + "id": "7sKB7uoSmxgH" + } + }, + { + "cell_type": "code", + "source": [ + "shipping_labels" + ], + "metadata": { + "id": "a_wjBRRblyiw" + }, + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "code", + "source": [ + "shipping_labels['train']" + ], + "metadata": { + "id": "thYawHNgm4yJ" + }, + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "code", + "source": [ + "shipping_labels['train'].to_pandas()" + ], + "metadata": { + "id": "xP1acn9em6zO" + }, + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "code", + "source": [ + "### show the labels list\n", + "label_list = shipping_labels[\"train\"].features[f\"ner_tags\"].feature.names\n", + "label_list" + ], + "metadata": { + "id": "9i-MD-yim_94" + }, + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "markdown", + "source": [ + "### Model Creation\n", + "- used models\n", + "1. xlm-roberta-large\n", + "2. distilbert-base-cased\n", + "3. bert-base-uncased\n", + "4. bert-base-cased" + ], + "metadata": { + "id": "mFFs1D8cnW8d" + } + }, + { + "cell_type": "code", + "source": [ + "\n", + "from transformers import AutoTokenizer\n", + "\n", + "tokenizer_roberta = AutoTokenizer.from_pretrained(\"xlm-roberta-large\")\n" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 145, + "referenced_widgets": [ + "c18b4e07a5634929bb1cf1869b5bd3cd", + "e16d47fc272444c5804ed52924092a54", + "d95bf93709a54bd0a4003eb7d0c54063", + "b90ba9ba331f4fea9915183527425152", + "ce33d4e563e443b99ebb9b70f508b2f7", + "7f0872cc54304ff7839fd52c390ab23a", + "cd54d91069034b1ab8d54277242e1212", + "65d197e11c77469d9d05a054e63fba77", + "36c979ba9b374a64870941b6c269c70f", + "ed4f92c51cbe4416b27d5b2e06a61ff8", + "4498ec5e15814967be17503536acd8fa", + "ba981d27be0a434fb215169036ca4d47", + "f837a0b50aa84bc58d256ef0434c101d", + "222adb2c788e4dc5964d005b6752dab8", + "b4908d98da594c1e8932cdcc63d3fa53", + "c9a7bba8cef94fc3ac38fededc4206b6", + "52bcf8dfa4964e0aa3bc882c3b01babf", + "52a28fd53a984c829f24883f612e9264", + "1c4207338d5c41af91975f4eba907c06", + "54d17297d0054f2f97c866896fc275f0", + "9cba19df4b044452bf585d2ef1066a5f", + "78b7a1ee87f340439a6c8f53c217ba17", + "f19c8a98bc494fb294a27b5d180877f1", + "dec6e5de29f744aeadf716d91af52bf0", + "7e639de76dc94ac68b3f1ead715c0215", + "482a10e359f848039a796e2ed4fad03b", + "e851d46ff72d4843a974f6e3e4962542", + "6d499c9ca96349f6a78a55069af586af", + "2ed8f78c1a414b93b4293ef3a2e368f9", + "f57eee3bcf924f77a553c792431608ad", + "7e390da8f4134b58b3ac0351bdf0729c", + "7f3d8132f798405c8359ddfb886e448b", + "49fee89388804ee79d0574f5aa7ac928", + "3dafad27f524422c848165dcd0baa9eb", + "4aec17e7b4f34c77a016202dc32027a6", + "d3b0c0b11c3845289e976d635352c712", + "47b4097d57c8466193037605b7c9a8ab", + "714eec46a29f4896aa83924f0c200fac", + "a494c37e39df4f91b09507f79eea7a6a", + "855be793ef9e41a99b99ade4b95c1fe3", + "b51c0a2e93864935bdbd2308e478a47e", + "2917b399c7bf4599a614a5314cb3f9b2", + "fae1dc5f82044cc5bbe863285dd87da6", + "a2e32d2b66604c95a5b4c219e892b675" + ] + }, + "id": "c9_8Ti3NnQqW", + "outputId": "7cd084ba-bc66-47b4-9a32-481fcb02151d" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": [ + "tokenizer_config.json: 0%| | 0.00/25.0 [00:00\u001b[0m in \u001b[0;36m\u001b[0;34m()\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0mtokenized_bert_uncased\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mshipping_labels\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mmap\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mtokenize_and_align_labels\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mbatched\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;32mTrue\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m", + "\u001b[0;31mNameError\u001b[0m: name 'shipping_labels' is not defined" + ] + } + ] + }, + { + "cell_type": "code", + "source": [ + "from transformers import DataCollatorForTokenClassification\n", + "#add tokenizer\n", + "data_collator = DataCollatorForTokenClassification(tokenizer=tokenizer_bert_uncased,)" + ], + "metadata": { + "id": "ytI_JcWEtE45" + }, + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "markdown", + "source": [ + "### Train the model" + ], + "metadata": { + "id": "6wuqpPiQvNUz" + } + }, + { + "cell_type": "code", + "source": [ + "import evaluate\n", + "\n", + "seqeval = evaluate.load(\"seqeval\")" + ], + "metadata": { + "id": "4PvDUBSxvHH_" + }, + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "code", + "source": [ + "import numpy as np\n", + "\n", + "example = shipping_labels[\"train\"][0]['ner_tags']\n", + "labels = [label_list[i] for i in example]\n", + "\n", + "\n", + "def compute_metrics(p):\n", + " predictions, labels = p\n", + " predictions = np.argmax(predictions, axis=2)\n", + "\n", + " true_predictions = [\n", + " [label_list[p] for (p, l) in zip(prediction, label) if l != -100]\n", + " for prediction, label in zip(predictions, labels)\n", + " ]\n", + " true_labels = [\n", + " [label_list[l] for (p, l) in zip(prediction, label) if l != -100]\n", + " for prediction, label in zip(predictions, labels)\n", + " ]\n", + "\n", + " results = seqeval.compute(predictions=true_predictions, references=true_labels)\n", + " return {\n", + " \"precision\": results[\"overall_precision\"],\n", + " \"recall\": results[\"overall_recall\"],\n", + " \"f1\": results[\"overall_f1\"],\n", + " \"accuracy\": results[\"overall_accuracy\"],\n", + " }" + ], + "metadata": { + "id": "ia5vLfKTvTjy" + }, + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "code", + "source": [ + "id2label = {\n", + " 0:\"O\",\n", + " 1:\"B-ORG\",\n", + " 2:\"I-ORG\",\n", + " 3:\"B-GCNUMBER\",\n", + " 4:\"I-GCNUMBER\",\n", + " 5:\"B-BGNUMBER\",\n", + " 6:\"I-BGNUMBER\",\n", + " 7:\"B-NAME\",\n", + " 8:\"I-NAME\",\n", + " 9:\"B-LOCATION\",\n", + " 10:\"I-LOCATION\",\n", + " 11:\"B-COUNTRY\",\n", + " 12:\"I-COUNTRY\",\n", + "}\n", + "label2id = {\n", + " \"O\" :0 ,\n", + " \"B-ORG\" :1 ,\n", + " \"I-ORG\" :2 ,\n", + " \"B-GCNUMBER\" :3 ,\n", + " \"I-GCNUMBER\" :4 ,\n", + " \"B-BGNUMBER\" :5 ,\n", + " \"I-BGNUMBER\" :6 ,\n", + " \"B-NAME\" :7 ,\n", + " \"I-NAME\" :8 ,\n", + " \"B-LOCATION\" :9 ,\n", + " \"I-LOCATION\":10 ,\n", + " \"B-COUNTRY\":11 ,\n", + " \"I-COUNTRY\":12 ,\n", + "}" + ], + "metadata": { + "id": "1hkWx_1EvfQZ" + }, + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "code", + "source": [ + "from transformers import AutoModelForTokenClassification\n", + "model = AutoModelForTokenClassification.from_pretrained(\"bert-base-uncased\", num_labels=13,id2label=id2label, label2id=label2id)" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 105, + "referenced_widgets": [ + "d09bf4b2b00645ae801039fe86eec1be", + "53dae5f5782446b79a54dfba95950859", + "9c0f82538b15420f8810dd3c14b942f6", + "bd7e5e72d86a4f3290a5c92b61fc8b3d", + "4aef3db3496c4117b72884967266e992", + "f12403295a384081bfa2748147d7b03d", + "3bfef039f33245e795ce431dd20b58be", + "1178a785cf1c468dbfcf4b4a8c622249", + "3186a33bf7b04dd7a8b7368acee94c47", + "397ea04a9a7b40ec8e7edf03a66b4fa0", + "fdbeb8f01a1c46cba428648be4c1dd13" + ] + }, + "id": "RjZmZ-ztxC2h", + "outputId": "842a7cad-dbec-4e13-8d86-50ecf3916456" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": [ + "model.safetensors: 0%| | 0.00/440M [00:00" + ], + "text/html": [ + "\n", + "
\n", + " \n", + " \n", + " [210/210 08:28, Epoch 30/30]\n", + "
\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
EpochTraining LossValidation LossPrecisionRecallF1Accuracy
1No log1.9826270.0000000.0000000.0000000.429379
2No log1.7524540.3076920.0533330.0909090.491525
3No log1.5701540.3846150.1333330.1980200.514124
4No log1.4392910.3666670.1466670.2095240.525424
5No log1.3169810.3939390.1733330.2407410.553672
6No log1.2043730.5833330.2800000.3783780.604520
7No log1.0846890.5961540.4133330.4881890.661017
8No log0.9798390.6500000.5200000.5777780.711864
9No log0.8890850.6857140.6400000.6620690.757062
10No log0.8046490.7183100.6800000.6986300.774011
11No log0.7313010.7297300.7200000.7248320.802260
12No log0.6669180.8157890.8266670.8211920.853107
13No log0.6452520.7948720.8266670.8104580.853107
14No log0.5993390.8076920.8400000.8235290.864407
15No log0.5591120.8205130.8533330.8366010.870056
16No log0.5497880.7804880.8533330.8152870.870056
17No log0.5298460.8000000.8533330.8258060.875706
18No log0.5213260.7777780.8400000.8076920.864407
19No log0.5234220.8250000.8800000.8516130.887006
20No log0.5238080.8227850.8666670.8441560.881356
21No log0.5359670.8170730.8933330.8535030.887006
22No log0.5156440.8250000.8800000.8516130.887006
23No log0.5111070.8250000.8800000.8516130.887006
24No log0.5197900.8250000.8800000.8516130.887006
25No log0.5185940.8250000.8800000.8516130.887006
26No log0.5176940.8250000.8800000.8516130.887006
27No log0.5147000.8250000.8800000.8516130.887006
28No log0.5152720.8250000.8800000.8516130.887006
29No log0.5153490.8250000.8800000.8516130.887006
30No log0.5153600.8250000.8800000.8516130.887006

" + ] + }, + "metadata": {} + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "/usr/local/lib/python3.10/dist-packages/seqeval/metrics/v1.py:57: UndefinedMetricWarning: Precision and F-score are ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.\n", + " _warn_prf(average, modifier, msg_start, len(result))\n", + "/usr/local/lib/python3.10/dist-packages/seqeval/metrics/v1.py:57: UndefinedMetricWarning: Precision and F-score are ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n", + " _warn_prf(average, modifier, msg_start, len(result))\n", + "/usr/local/lib/python3.10/dist-packages/seqeval/metrics/v1.py:57: UndefinedMetricWarning: Precision and F-score are ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.\n", + " _warn_prf(average, modifier, msg_start, len(result))\n", + "/usr/local/lib/python3.10/dist-packages/seqeval/metrics/v1.py:57: UndefinedMetricWarning: Precision and F-score are ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.\n", + " _warn_prf(average, modifier, msg_start, len(result))\n", + "/usr/local/lib/python3.10/dist-packages/seqeval/metrics/v1.py:57: UndefinedMetricWarning: Precision and F-score are ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.\n", + " _warn_prf(average, modifier, msg_start, len(result))\n", + "/usr/local/lib/python3.10/dist-packages/seqeval/metrics/v1.py:57: UndefinedMetricWarning: Precision and F-score are ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.\n", + " _warn_prf(average, modifier, msg_start, len(result))\n", + "/usr/local/lib/python3.10/dist-packages/seqeval/metrics/v1.py:57: UndefinedMetricWarning: Precision and F-score are ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.\n", + " _warn_prf(average, modifier, msg_start, len(result))\n", + "/usr/local/lib/python3.10/dist-packages/seqeval/metrics/v1.py:57: UndefinedMetricWarning: Precision and F-score are ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.\n", + " _warn_prf(average, modifier, msg_start, len(result))\n", + "/usr/local/lib/python3.10/dist-packages/seqeval/metrics/v1.py:57: UndefinedMetricWarning: Precision and F-score are ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.\n", + " _warn_prf(average, modifier, msg_start, len(result))\n", + "/usr/local/lib/python3.10/dist-packages/seqeval/metrics/v1.py:57: UndefinedMetricWarning: Precision and F-score are ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.\n", + " _warn_prf(average, modifier, msg_start, len(result))\n", + "/usr/local/lib/python3.10/dist-packages/seqeval/metrics/v1.py:57: UndefinedMetricWarning: Precision and F-score are ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.\n", + " _warn_prf(average, modifier, msg_start, len(result))\n", + "/usr/local/lib/python3.10/dist-packages/seqeval/metrics/v1.py:57: UndefinedMetricWarning: Precision and F-score are ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.\n", + " _warn_prf(average, modifier, msg_start, len(result))\n" + ] + }, + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "TrainOutput(global_step=210, training_loss=0.47932579403831843, metrics={'train_runtime': 508.6205, 'train_samples_per_second': 2.949, 'train_steps_per_second': 0.413, 'total_flos': 52770861370944.0, 'train_loss': 0.47932579403831843, 'epoch': 30.0})" + ] + }, + "metadata": {}, + "execution_count": 29 + } + ] + }, + { + "cell_type": "markdown", + "source": [ + "#### push to hub the final model" + ], + "metadata": { + "id": "ZWWdzstTQvVl" + } + }, + { + "cell_type": "code", + "source": [ + "trainer.push_to_hub()" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 149, + "referenced_widgets": [ + "fba645b2f67747e6b6567ec0a5fdea20", + "79547ecdb2684c93b670c9b654429402", + "fd6624bacc6d4c47acae7b4ede8c1f3b", + "6cd6ee458afb48d398022267f39b0fc4", + "9b66439e9e7e422a97995cfb5d8f33b8", + "9858a3b7c3944e4fae6b3fadc9642125", + "775a0752d94a40138acdee0db8739031", + "445f2113b9f7485c868570d49eb52568", + "e709ba7a504b4efe934d3ee7774ffc5f", + "42ebf1faa74b46d5b1b868f83f44a657", + "b8992ac697014624a58a541efca24655", + "be4b170b77c2428a83104f56c2774eff", + "ad4b06c06e894c58956c8708c0ccfd67", + "f3efe96ce3d14872b1b62ef0b0f6122f", + "1a6cb5fe580141c6bdeb1dc0a321d380", + "1f2a427df9604930b915441f2e89ddd3", + "2ac0d35389794c3faceb679a43c7ceea", + "b31ac4e6bd36460987d448b9e7b1f08c", + "492b9b0c9f594ef6ae0d238b694ca181", + "97f064e2b05f44778b84d5d5d9cad20e", + "43e09ad9787244f8bf20c01c7da81991", + "46b4241483ea4dc984cc92cce41514ee", + "3afc5d399625437196c6a52d36373f61", + "62f221b1ab7a4c608be46ab9fab43af1", + "cbca91cd984d42fd9ad90fcb58331d6e", + "63931ac1a75241dfb7519da2194969d2", + "a576f7800c0740a1a7b70c55e2c0f071", + "5cd48e3b8d1c42edadc2413f1baac426", + "51efa950d7a44737b9e7dbdf177be9a3", + "59878cd245324664bbeb4aefc0fc36e4", + "bac939ffbe8f4edd9d4bf7f4281c0707", + "71c6509f4497436fb9bd2c3e141990f4", + "20c2b2fd5aa24683ad3cbe18a485bcb1" + ] + }, + "id": "rsUb3czVK8ub", + "outputId": "f00733ec-7ddb-4664-c778-1555853a4e7e" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": [ + "model.safetensors: 0%| | 0.00/261M [00:00=1.20.27 (from flair)\n", + " Downloading boto3-1.34.75-py3-none-any.whl (139 kB)\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m139.3/139.3 kB\u001b[0m \u001b[31m4.0 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25hCollecting bpemb>=0.3.2 (from flair)\n", + " Downloading bpemb-0.3.5-py3-none-any.whl (19 kB)\n", + "Collecting conllu>=4.0 (from flair)\n", + " Downloading conllu-4.5.3-py2.py3-none-any.whl (16 kB)\n", + "Collecting deprecated>=1.2.13 (from flair)\n", + " Downloading Deprecated-1.2.14-py2.py3-none-any.whl (9.6 kB)\n", + "Collecting ftfy>=6.1.0 (from flair)\n", + " Downloading ftfy-6.2.0-py3-none-any.whl (54 kB)\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m54.4/54.4 kB\u001b[0m \u001b[31m3.3 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25hRequirement already satisfied: gdown>=4.4.0 in /usr/local/lib/python3.10/dist-packages (from flair) (4.7.3)\n", + "Requirement already satisfied: gensim>=4.2.0 in /usr/local/lib/python3.10/dist-packages (from flair) (4.3.2)\n", + "Requirement already satisfied: huggingface-hub>=0.10.0 in /usr/local/lib/python3.10/dist-packages (from flair) (0.20.3)\n", + "Collecting janome>=0.4.2 (from flair)\n", + " Downloading Janome-0.5.0-py2.py3-none-any.whl (19.7 MB)\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m19.7/19.7 MB\u001b[0m \u001b[31m49.0 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25hCollecting langdetect>=1.0.9 (from flair)\n", + " Downloading langdetect-1.0.9.tar.gz (981 kB)\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m981.5/981.5 kB\u001b[0m \u001b[31m57.4 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25h Preparing metadata (setup.py) ... \u001b[?25l\u001b[?25hdone\n", + "Requirement already satisfied: lxml>=4.8.0 in /usr/local/lib/python3.10/dist-packages (from flair) (4.9.4)\n", + "Requirement already satisfied: matplotlib>=2.2.3 in /usr/local/lib/python3.10/dist-packages (from flair) (3.7.1)\n", + "Requirement already satisfied: more-itertools>=8.13.0 in /usr/local/lib/python3.10/dist-packages (from flair) (10.1.0)\n", + "Collecting mpld3>=0.3 (from flair)\n", + " Downloading mpld3-0.5.10-py3-none-any.whl (202 kB)\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m202.6/202.6 kB\u001b[0m \u001b[31m22.7 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25hCollecting pptree>=3.1 (from flair)\n", + " Downloading pptree-3.1.tar.gz (3.0 kB)\n", + " Preparing metadata (setup.py) ... \u001b[?25l\u001b[?25hdone\n", + "Requirement already satisfied: python-dateutil>=2.8.2 in /usr/local/lib/python3.10/dist-packages (from flair) (2.8.2)\n", + "Collecting pytorch-revgrad>=0.2.0 (from flair)\n", + " Downloading pytorch_revgrad-0.2.0-py3-none-any.whl (4.6 kB)\n", + "Requirement already satisfied: regex>=2022.1.18 in /usr/local/lib/python3.10/dist-packages (from flair) (2023.12.25)\n", + "Requirement already satisfied: scikit-learn>=1.0.2 in /usr/local/lib/python3.10/dist-packages (from flair) (1.2.2)\n", + "Collecting segtok>=1.5.11 (from flair)\n", + " Downloading segtok-1.5.11-py3-none-any.whl (24 kB)\n", + "Collecting sqlitedict>=2.0.0 (from flair)\n", + " Downloading sqlitedict-2.1.0.tar.gz (21 kB)\n", + " Preparing metadata (setup.py) ... \u001b[?25l\u001b[?25hdone\n", + "Requirement already satisfied: tabulate>=0.8.10 in /usr/local/lib/python3.10/dist-packages (from flair) (0.9.0)\n", + "Requirement already satisfied: torch!=1.8,>=1.5.0 in /usr/local/lib/python3.10/dist-packages (from flair) (2.2.1+cu121)\n", + "Requirement already satisfied: tqdm>=4.63.0 in /usr/local/lib/python3.10/dist-packages (from flair) (4.66.2)\n", + "Collecting transformer-smaller-training-vocab>=0.2.3 (from flair)\n", + " Downloading transformer_smaller_training_vocab-0.3.3-py3-none-any.whl (14 kB)\n", + "Requirement already satisfied: transformers[sentencepiece]<5.0.0,>=4.18.0 in /usr/local/lib/python3.10/dist-packages (from flair) (4.38.2)\n", + "Collecting urllib3<2.0.0,>=1.0.0 (from flair)\n", + " Downloading urllib3-1.26.18-py2.py3-none-any.whl (143 kB)\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m143.8/143.8 kB\u001b[0m \u001b[31m19.5 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25hCollecting wikipedia-api>=0.5.7 (from flair)\n", + " Downloading Wikipedia_API-0.6.0-py3-none-any.whl (14 kB)\n", + "Collecting semver<4.0.0,>=3.0.0 (from flair)\n", + " Downloading semver-3.0.2-py3-none-any.whl (17 kB)\n", + "Collecting botocore<1.35.0,>=1.34.75 (from boto3>=1.20.27->flair)\n", + " Downloading botocore-1.34.75-py3-none-any.whl (12.1 MB)\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m12.1/12.1 MB\u001b[0m \u001b[31m94.7 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25hCollecting jmespath<2.0.0,>=0.7.1 (from boto3>=1.20.27->flair)\n", + " Downloading jmespath-1.0.1-py3-none-any.whl (20 kB)\n", + "Collecting s3transfer<0.11.0,>=0.10.0 (from boto3>=1.20.27->flair)\n", + " Downloading s3transfer-0.10.1-py3-none-any.whl (82 kB)\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m82.2/82.2 kB\u001b[0m \u001b[31m12.2 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25hRequirement already satisfied: numpy in /usr/local/lib/python3.10/dist-packages (from bpemb>=0.3.2->flair) (1.25.2)\n", + "Requirement already satisfied: requests in /usr/local/lib/python3.10/dist-packages (from bpemb>=0.3.2->flair) (2.31.0)\n", + "Requirement already satisfied: sentencepiece in /usr/local/lib/python3.10/dist-packages (from bpemb>=0.3.2->flair) (0.1.99)\n", + "Requirement already satisfied: wrapt<2,>=1.10 in /usr/local/lib/python3.10/dist-packages (from deprecated>=1.2.13->flair) (1.14.1)\n", + "Requirement already satisfied: wcwidth<0.3.0,>=0.2.12 in /usr/local/lib/python3.10/dist-packages (from ftfy>=6.1.0->flair) (0.2.13)\n", + "Requirement already satisfied: filelock in /usr/local/lib/python3.10/dist-packages (from gdown>=4.4.0->flair) (3.13.3)\n", + "Requirement already satisfied: six in /usr/local/lib/python3.10/dist-packages (from gdown>=4.4.0->flair) (1.16.0)\n", + "Requirement already satisfied: beautifulsoup4 in /usr/local/lib/python3.10/dist-packages (from gdown>=4.4.0->flair) (4.12.3)\n", + "Requirement already satisfied: scipy>=1.7.0 in /usr/local/lib/python3.10/dist-packages (from gensim>=4.2.0->flair) (1.11.4)\n", + "Requirement already satisfied: smart-open>=1.8.1 in /usr/local/lib/python3.10/dist-packages (from gensim>=4.2.0->flair) (6.4.0)\n", + "Requirement already satisfied: fsspec>=2023.5.0 in /usr/local/lib/python3.10/dist-packages (from huggingface-hub>=0.10.0->flair) (2023.6.0)\n", + "Requirement already satisfied: pyyaml>=5.1 in /usr/local/lib/python3.10/dist-packages (from huggingface-hub>=0.10.0->flair) (6.0.1)\n", + "Requirement already satisfied: typing-extensions>=3.7.4.3 in /usr/local/lib/python3.10/dist-packages (from huggingface-hub>=0.10.0->flair) (4.10.0)\n", + "Requirement already satisfied: packaging>=20.9 in /usr/local/lib/python3.10/dist-packages (from huggingface-hub>=0.10.0->flair) (24.0)\n", + "Requirement already satisfied: contourpy>=1.0.1 in /usr/local/lib/python3.10/dist-packages (from matplotlib>=2.2.3->flair) (1.2.0)\n", + "Requirement already satisfied: cycler>=0.10 in /usr/local/lib/python3.10/dist-packages (from matplotlib>=2.2.3->flair) (0.12.1)\n", + "Requirement already satisfied: fonttools>=4.22.0 in /usr/local/lib/python3.10/dist-packages (from matplotlib>=2.2.3->flair) (4.50.0)\n", + "Requirement already satisfied: kiwisolver>=1.0.1 in /usr/local/lib/python3.10/dist-packages (from matplotlib>=2.2.3->flair) (1.4.5)\n", + "Requirement already satisfied: pillow>=6.2.0 in /usr/local/lib/python3.10/dist-packages (from matplotlib>=2.2.3->flair) (9.4.0)\n", + "Requirement already satisfied: pyparsing>=2.3.1 in /usr/local/lib/python3.10/dist-packages (from matplotlib>=2.2.3->flair) (3.1.2)\n", + "Requirement already satisfied: jinja2 in /usr/local/lib/python3.10/dist-packages (from mpld3>=0.3->flair) (3.1.3)\n", + "Requirement already satisfied: joblib>=1.1.1 in /usr/local/lib/python3.10/dist-packages (from scikit-learn>=1.0.2->flair) (1.3.2)\n", + "Requirement already satisfied: threadpoolctl>=2.0.0 in /usr/local/lib/python3.10/dist-packages (from scikit-learn>=1.0.2->flair) (3.4.0)\n", + "Requirement already satisfied: sympy in /usr/local/lib/python3.10/dist-packages (from torch!=1.8,>=1.5.0->flair) (1.12)\n", + "Requirement already satisfied: networkx in /usr/local/lib/python3.10/dist-packages (from torch!=1.8,>=1.5.0->flair) (3.2.1)\n", + "Collecting nvidia-cuda-nvrtc-cu12==12.1.105 (from torch!=1.8,>=1.5.0->flair)\n", + " Downloading nvidia_cuda_nvrtc_cu12-12.1.105-py3-none-manylinux1_x86_64.whl (23.7 MB)\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m23.7/23.7 MB\u001b[0m \u001b[31m54.0 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25hCollecting nvidia-cuda-runtime-cu12==12.1.105 (from torch!=1.8,>=1.5.0->flair)\n", + " Downloading nvidia_cuda_runtime_cu12-12.1.105-py3-none-manylinux1_x86_64.whl (823 kB)\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m823.6/823.6 kB\u001b[0m \u001b[31m66.1 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25hCollecting nvidia-cuda-cupti-cu12==12.1.105 (from torch!=1.8,>=1.5.0->flair)\n", + " Downloading nvidia_cuda_cupti_cu12-12.1.105-py3-none-manylinux1_x86_64.whl (14.1 MB)\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m14.1/14.1 MB\u001b[0m \u001b[31m103.4 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25hCollecting nvidia-cudnn-cu12==8.9.2.26 (from torch!=1.8,>=1.5.0->flair)\n", + " Downloading nvidia_cudnn_cu12-8.9.2.26-py3-none-manylinux1_x86_64.whl (731.7 MB)\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m731.7/731.7 MB\u001b[0m \u001b[31m1.0 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25hCollecting nvidia-cublas-cu12==12.1.3.1 (from torch!=1.8,>=1.5.0->flair)\n", + " Downloading nvidia_cublas_cu12-12.1.3.1-py3-none-manylinux1_x86_64.whl (410.6 MB)\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m410.6/410.6 MB\u001b[0m \u001b[31m2.5 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25hCollecting nvidia-cufft-cu12==11.0.2.54 (from torch!=1.8,>=1.5.0->flair)\n", + " Downloading nvidia_cufft_cu12-11.0.2.54-py3-none-manylinux1_x86_64.whl (121.6 MB)\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m121.6/121.6 MB\u001b[0m \u001b[31m8.3 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25hCollecting nvidia-curand-cu12==10.3.2.106 (from torch!=1.8,>=1.5.0->flair)\n", + " Downloading nvidia_curand_cu12-10.3.2.106-py3-none-manylinux1_x86_64.whl (56.5 MB)\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m56.5/56.5 MB\u001b[0m \u001b[31m15.2 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25hCollecting nvidia-cusolver-cu12==11.4.5.107 (from torch!=1.8,>=1.5.0->flair)\n", + " Downloading nvidia_cusolver_cu12-11.4.5.107-py3-none-manylinux1_x86_64.whl (124.2 MB)\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m124.2/124.2 MB\u001b[0m \u001b[31m8.3 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25hCollecting nvidia-cusparse-cu12==12.1.0.106 (from torch!=1.8,>=1.5.0->flair)\n", + " Downloading nvidia_cusparse_cu12-12.1.0.106-py3-none-manylinux1_x86_64.whl (196.0 MB)\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m196.0/196.0 MB\u001b[0m \u001b[31m2.9 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25hCollecting nvidia-nccl-cu12==2.19.3 (from torch!=1.8,>=1.5.0->flair)\n", + " Downloading nvidia_nccl_cu12-2.19.3-py3-none-manylinux1_x86_64.whl (166.0 MB)\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m166.0/166.0 MB\u001b[0m \u001b[31m7.4 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25hCollecting nvidia-nvtx-cu12==12.1.105 (from torch!=1.8,>=1.5.0->flair)\n", + " Downloading nvidia_nvtx_cu12-12.1.105-py3-none-manylinux1_x86_64.whl (99 kB)\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m99.1/99.1 kB\u001b[0m \u001b[31m13.8 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25hRequirement already satisfied: triton==2.2.0 in /usr/local/lib/python3.10/dist-packages (from torch!=1.8,>=1.5.0->flair) (2.2.0)\n", + "Collecting nvidia-nvjitlink-cu12 (from nvidia-cusolver-cu12==11.4.5.107->torch!=1.8,>=1.5.0->flair)\n", + " Downloading nvidia_nvjitlink_cu12-12.4.99-py3-none-manylinux2014_x86_64.whl (21.1 MB)\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m21.1/21.1 MB\u001b[0m \u001b[31m72.3 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25hRequirement already satisfied: tokenizers<0.19,>=0.14 in /usr/local/lib/python3.10/dist-packages (from transformers[sentencepiece]<5.0.0,>=4.18.0->flair) (0.15.2)\n", + "Requirement already satisfied: safetensors>=0.4.1 in /usr/local/lib/python3.10/dist-packages (from transformers[sentencepiece]<5.0.0,>=4.18.0->flair) (0.4.2)\n", + "Requirement already satisfied: protobuf in /usr/local/lib/python3.10/dist-packages (from transformers[sentencepiece]<5.0.0,>=4.18.0->flair) (3.20.3)\n", + "Collecting accelerate>=0.21.0 (from transformers[sentencepiece]<5.0.0,>=4.18.0->flair)\n", + " Downloading accelerate-0.28.0-py3-none-any.whl (290 kB)\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m290.1/290.1 kB\u001b[0m \u001b[31m36.3 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25hRequirement already satisfied: soupsieve>1.2 in /usr/local/lib/python3.10/dist-packages (from beautifulsoup4->gdown>=4.4.0->flair) (2.5)\n", + "Requirement already satisfied: MarkupSafe>=2.0 in /usr/local/lib/python3.10/dist-packages (from jinja2->mpld3>=0.3->flair) (2.1.5)\n", + "Requirement already satisfied: charset-normalizer<4,>=2 in /usr/local/lib/python3.10/dist-packages (from requests->bpemb>=0.3.2->flair) (3.3.2)\n", + "Requirement already satisfied: idna<4,>=2.5 in /usr/local/lib/python3.10/dist-packages (from requests->bpemb>=0.3.2->flair) (3.6)\n", + "Requirement already satisfied: certifi>=2017.4.17 in /usr/local/lib/python3.10/dist-packages (from requests->bpemb>=0.3.2->flair) (2024.2.2)\n", + "Requirement already satisfied: PySocks!=1.5.7,>=1.5.6 in /usr/local/lib/python3.10/dist-packages (from requests->bpemb>=0.3.2->flair) (1.7.1)\n", + "Requirement already satisfied: mpmath>=0.19 in /usr/local/lib/python3.10/dist-packages (from sympy->torch!=1.8,>=1.5.0->flair) (1.3.0)\n", + "Requirement already satisfied: psutil in /usr/local/lib/python3.10/dist-packages (from accelerate>=0.21.0->transformers[sentencepiece]<5.0.0,>=4.18.0->flair) (5.9.5)\n", + "Building wheels for collected packages: langdetect, pptree, sqlitedict\n", + " Building wheel for langdetect (setup.py) ... \u001b[?25l\u001b[?25hdone\n", + " Created wheel for langdetect: filename=langdetect-1.0.9-py3-none-any.whl size=993227 sha256=e01c539a9b90d599d2fe35adb08c91677e0990b60f131cf84b977d00693652b5\n", + " Stored in directory: /root/.cache/pip/wheels/95/03/7d/59ea870c70ce4e5a370638b5462a7711ab78fba2f655d05106\n", + " Building wheel for pptree (setup.py) ... \u001b[?25l\u001b[?25hdone\n", + " Created wheel for pptree: filename=pptree-3.1-py3-none-any.whl size=4609 sha256=1abdab5cf109ed1043f5d6e0f525dd465a853b61e8a0fb8ef0eea4386141c870\n", + " Stored in directory: /root/.cache/pip/wheels/9f/b6/0e/6f26eb9e6eb53ff2107a7888d72b5a6a597593956113037828\n", + " Building wheel for sqlitedict (setup.py) ... \u001b[?25l\u001b[?25hdone\n", + " Created wheel for sqlitedict: filename=sqlitedict-2.1.0-py3-none-any.whl size=16862 sha256=f599976600ef120eaf537e850d09be842667ef488860734f697009d1faa9c664\n", + " Stored in directory: /root/.cache/pip/wheels/79/d6/e7/304e0e6cb2221022c26d8161f7c23cd4f259a9e41e8bbcfabd\n", + "Successfully built langdetect pptree sqlitedict\n", + "Installing collected packages: sqlitedict, pptree, janome, urllib3, semver, segtok, nvidia-nvtx-cu12, nvidia-nvjitlink-cu12, nvidia-nccl-cu12, nvidia-curand-cu12, nvidia-cufft-cu12, nvidia-cuda-runtime-cu12, nvidia-cuda-nvrtc-cu12, nvidia-cuda-cupti-cu12, nvidia-cublas-cu12, langdetect, jmespath, ftfy, deprecated, conllu, nvidia-cusparse-cu12, nvidia-cudnn-cu12, botocore, wikipedia-api, s3transfer, nvidia-cusolver-cu12, mpld3, bpemb, boto3, pytorch-revgrad, accelerate, transformer-smaller-training-vocab, flair\n", + " Attempting uninstall: urllib3\n", + " Found existing installation: urllib3 2.0.7\n", + " Uninstalling urllib3-2.0.7:\n", + " Successfully uninstalled urllib3-2.0.7\n", + "Successfully installed accelerate-0.28.0 boto3-1.34.75 botocore-1.34.75 bpemb-0.3.5 conllu-4.5.3 deprecated-1.2.14 flair-0.13.1 ftfy-6.2.0 janome-0.5.0 jmespath-1.0.1 langdetect-1.0.9 mpld3-0.5.10 nvidia-cublas-cu12-12.1.3.1 nvidia-cuda-cupti-cu12-12.1.105 nvidia-cuda-nvrtc-cu12-12.1.105 nvidia-cuda-runtime-cu12-12.1.105 nvidia-cudnn-cu12-8.9.2.26 nvidia-cufft-cu12-11.0.2.54 nvidia-curand-cu12-10.3.2.106 nvidia-cusolver-cu12-11.4.5.107 nvidia-cusparse-cu12-12.1.0.106 nvidia-nccl-cu12-2.19.3 nvidia-nvjitlink-cu12-12.4.99 nvidia-nvtx-cu12-12.1.105 pptree-3.1 pytorch-revgrad-0.2.0 s3transfer-0.10.1 segtok-1.5.11 semver-3.0.2 sqlitedict-2.1.0 transformer-smaller-training-vocab-0.3.3 urllib3-1.26.18 wikipedia-api-0.6.0\n" + ] + } + ] + }, + { + "cell_type": "code", + "source": [ + "!pip install torch" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "xZ9OVcoGJ5HI", + "outputId": "3ba88ce4-6389-4bde-8b45-cd19b49c2adc" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Requirement already satisfied: torch in /usr/local/lib/python3.10/dist-packages (2.2.1+cu121)\n", + "Requirement already satisfied: filelock in /usr/local/lib/python3.10/dist-packages (from torch) (3.13.3)\n", + "Requirement already satisfied: typing-extensions>=4.8.0 in /usr/local/lib/python3.10/dist-packages (from torch) (4.10.0)\n", + "Requirement already satisfied: sympy in /usr/local/lib/python3.10/dist-packages (from torch) (1.12)\n", + "Requirement already satisfied: networkx in /usr/local/lib/python3.10/dist-packages (from torch) (3.2.1)\n", + "Requirement already satisfied: jinja2 in /usr/local/lib/python3.10/dist-packages (from torch) (3.1.3)\n", + "Requirement already satisfied: fsspec in /usr/local/lib/python3.10/dist-packages (from torch) (2023.6.0)\n", + "Requirement already satisfied: nvidia-cuda-nvrtc-cu12==12.1.105 in /usr/local/lib/python3.10/dist-packages (from torch) (12.1.105)\n", + "Requirement already satisfied: nvidia-cuda-runtime-cu12==12.1.105 in /usr/local/lib/python3.10/dist-packages (from torch) (12.1.105)\n", + "Requirement already satisfied: nvidia-cuda-cupti-cu12==12.1.105 in /usr/local/lib/python3.10/dist-packages (from torch) (12.1.105)\n", + "Requirement already satisfied: nvidia-cudnn-cu12==8.9.2.26 in /usr/local/lib/python3.10/dist-packages (from torch) (8.9.2.26)\n", + "Requirement already satisfied: nvidia-cublas-cu12==12.1.3.1 in /usr/local/lib/python3.10/dist-packages (from torch) (12.1.3.1)\n", + "Requirement already satisfied: nvidia-cufft-cu12==11.0.2.54 in /usr/local/lib/python3.10/dist-packages (from torch) (11.0.2.54)\n", + "Requirement already satisfied: nvidia-curand-cu12==10.3.2.106 in /usr/local/lib/python3.10/dist-packages (from torch) (10.3.2.106)\n", + "Requirement already satisfied: nvidia-cusolver-cu12==11.4.5.107 in /usr/local/lib/python3.10/dist-packages (from torch) (11.4.5.107)\n", + "Requirement already satisfied: nvidia-cusparse-cu12==12.1.0.106 in /usr/local/lib/python3.10/dist-packages (from torch) (12.1.0.106)\n", + "Requirement already satisfied: nvidia-nccl-cu12==2.19.3 in /usr/local/lib/python3.10/dist-packages (from torch) (2.19.3)\n", + "Requirement already satisfied: nvidia-nvtx-cu12==12.1.105 in /usr/local/lib/python3.10/dist-packages (from torch) (12.1.105)\n", + "Requirement already satisfied: triton==2.2.0 in /usr/local/lib/python3.10/dist-packages (from torch) (2.2.0)\n", + "Requirement already satisfied: nvidia-nvjitlink-cu12 in /usr/local/lib/python3.10/dist-packages (from nvidia-cusolver-cu12==11.4.5.107->torch) (12.4.99)\n", + "Requirement already satisfied: MarkupSafe>=2.0 in /usr/local/lib/python3.10/dist-packages (from jinja2->torch) (2.1.5)\n", + "Requirement already satisfied: mpmath>=0.19 in /usr/local/lib/python3.10/dist-packages (from sympy->torch) (1.3.0)\n" + ] + } + ] + }, + { + "cell_type": "code", + "source": [ + "# directory where the data resides\n", + "from flair.datasets import ColumnCorpus\n", + "from flair.data import Corpus\n", + "data_folder = '/content'\n", + "# initializing the corpus\n", + "columns = {0 : 'text', 1 : 'ner'}\n", + "corpus:Corpus = ColumnCorpus(data_folder, columns,\n", + " train_file = 'train.txt',\n", + " test_file = 'test.txt',\n", + " dev_file = 'val.txt')" + ], + "metadata": { + "id": "Kcdec6ATIWWO", + "colab": { + "base_uri": "https://localhost:8080/" + }, + "outputId": "38387105-26f7-49b3-84ae-1c838893eece" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "2024-04-02 12:38:16,830 Reading data from /content\n", + "2024-04-02 12:38:16,832 Train: /content/train.txt\n", + "2024-04-02 12:38:16,833 Dev: /content/val.txt\n", + "2024-04-02 12:38:16,834 Test: /content/test.txt\n" + ] + } + ] + }, + { + "cell_type": "code", + "source": [ + "# prompt: hstack merge 2 numpy array\n", + "\n", + "import numpy as np\n", + "\n", + "# Create two numpy arrays\n", + "arr1 = np.array([1, 2, 3])\n", + "arr2 = np.array([4, 5, 6])\n", + "\n", + "# Concatenate the arrays horizontally (side-by-side)\n", + "arr_hstack = np.hstack((arr1, arr2))\n", + "\n", + "# Print the resulting array\n", + "print(arr_hstack)\n" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "poqwQIWP2p3R", + "outputId": "9e3d838a-4ddd-4647-d0c3-531634922f38" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "[1 2 3 4 5 6]\n" + ] + } + ] + }, + { + "cell_type": "code", + "source": [ + "from flair.data import Corpus\n", + "from flair.datasets import ColumnCorpus\n", + "from flair.embeddings import WordEmbeddings, StackedEmbeddings, FlairEmbeddings\n", + "from flair.embeddings import TransformerWordEmbeddings\n", + "\n", + "# embeddings = TransformerWordEmbeddings(\n", + "# model='distilbert-base-cased',\n", + "# layers=\"-1\",\n", + "# subtoken_pooling=\"first\",\n", + "# fine_tune=True,\n", + "# use_context=True,\n", + "# )\n", + "\n", + "# 1. get the corpus\n", + "columns = {0 : 'text', 1 : 'ner'}\n", + "corpus:Corpus = ColumnCorpus(data_folder, columns,\n", + " train_file = 'train.txt',\n", + " test_file = 'test.txt',\n", + " dev_file = 'val.txt')\n", + "\n", + "# 2. what tag do we want to predict?\n", + "tag_type = 'ner'\n", + "\n", + "# 3. make the tag dictionary from the corpus\n", + "tag_dictionary = corpus.make_label_dictionary(label_type = 'ner')\n", + "print(tag_dictionary)\n", + "# 4. initialize each embedding we use\n", + "embedding_types = [\n", + " WordEmbeddings('en-glove'),\n", + " FlairEmbeddings('news-forward'),\n", + " FlairEmbeddings('news-backward'),\n", + "]\n", + "\n", + "# embedding stack consists of Flair and GloVe embeddings\n", + "embeddings = StackedEmbeddings(embeddings=embedding_types)\n", + "\n", + "# 5. initialize sequence tagger\n", + "from flair.models import SequenceTagger\n", + "\n", + "tagger = SequenceTagger(hidden_size=256,\n", + " embeddings=embeddings,\n", + " tag_dictionary=tag_dictionary,\n", + " tag_type=tag_type)\n", + "\n", + "# 6. initialize trainer\n", + "from flair.trainers import ModelTrainer\n", + "\n", + "trainer = ModelTrainer(tagger, corpus)\n", + "\n", + "# 7. run training\n", + "trainer.train('/content/drive/MyDrive/resources/taggers/ner-english',\n", + " train_with_dev=True,\n", + " max_epochs=150)\n" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "wA0xkTtZoiBY", + "outputId": "abcb9503-849f-40aa-9cbf-2cc67ee1f258" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "2024-04-02 12:38:21,457 Reading data from /content\n", + "2024-04-02 12:38:21,460 Train: /content/train.txt\n", + "2024-04-02 12:38:21,463 Dev: /content/val.txt\n", + "2024-04-02 12:38:21,468 Test: /content/test.txt\n", + "2024-04-02 12:38:21,549 Computing label dictionary. Progress:\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "0it [00:00, ?it/s]\n", + "45it [00:00, 15121.27it/s]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "2024-04-02 12:38:21,619 Dictionary created for label 'ner' with 2 values: GCNUM (seen 43 times), TRACK-ID (seen 42 times)\n", + "Dictionary with 2 tags: GCNUM, TRACK-ID\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\n" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "2024-04-02 12:38:21,903 https://flair.informatik.hu-berlin.de/resources/embeddings/token/glove.gensim.vectors.npy not found in cache, downloading to /tmp/tmpnvmwlbpa\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "100%|██████████| 153M/153M [00:04<00:00, 38.2MB/s]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "2024-04-02 12:38:26,387 copying /tmp/tmpnvmwlbpa to cache at /root/.flair/embeddings/glove.gensim.vectors.npy\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\n" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "2024-04-02 12:38:27,524 removing temp file /tmp/tmpnvmwlbpa\n", + "2024-04-02 12:38:27,835 https://flair.informatik.hu-berlin.de/resources/embeddings/token/glove.gensim not found in cache, downloading to /tmp/tmpydg9ahnl\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "100%|██████████| 20.5M/20.5M [00:00<00:00, 30.1MB/s]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "2024-04-02 12:38:28,743 copying /tmp/tmpydg9ahnl to cache at /root/.flair/embeddings/glove.gensim\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\n" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "2024-04-02 12:38:28,820 removing temp file /tmp/tmpydg9ahnl\n", + "2024-04-02 12:38:37,031 https://flair.informatik.hu-berlin.de/resources/embeddings/flair/news-forward-0.4.1.pt not found in cache, downloading to /tmp/tmpeed_9gtd\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "100%|██████████| 69.7M/69.7M [00:01<00:00, 36.9MB/s]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "2024-04-02 12:38:39,131 copying /tmp/tmpeed_9gtd to cache at /root/.flair/embeddings/news-forward-0.4.1.pt\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\n" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "2024-04-02 12:38:39,229 removing temp file /tmp/tmpeed_9gtd\n", + "2024-04-02 12:38:40,492 https://flair.informatik.hu-berlin.de/resources/embeddings/flair/news-backward-0.4.1.pt not found in cache, downloading to /tmp/tmphmv3s30g\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "100%|██████████| 69.7M/69.7M [00:01<00:00, 36.9MB/s]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "2024-04-02 12:38:42,596 copying /tmp/tmphmv3s30g to cache at /root/.flair/embeddings/news-backward-0.4.1.pt\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\n" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "2024-04-02 12:38:42,755 removing temp file /tmp/tmphmv3s30g\n", + "2024-04-02 12:38:43,154 SequenceTagger predicts: Dictionary with 9 tags: O, S-GCNUM, B-GCNUM, E-GCNUM, I-GCNUM, S-TRACK-ID, B-TRACK-ID, E-TRACK-ID, I-TRACK-ID\n", + "2024-04-02 12:38:43,551 ----------------------------------------------------------------------------------------------------\n", + "2024-04-02 12:38:43,553 Model: \"SequenceTagger(\n", + " (embeddings): StackedEmbeddings(\n", + " (list_embedding_0): WordEmbeddings(\n", + " 'en-glove'\n", + " (embedding): Embedding(400001, 100)\n", + " )\n", + " (list_embedding_1): FlairEmbeddings(\n", + " (lm): LanguageModel(\n", + " (drop): Dropout(p=0.05, inplace=False)\n", + " (encoder): Embedding(300, 100)\n", + " (rnn): LSTM(100, 2048)\n", + " )\n", + " )\n", + " (list_embedding_2): FlairEmbeddings(\n", + " (lm): LanguageModel(\n", + " (drop): Dropout(p=0.05, inplace=False)\n", + " (encoder): Embedding(300, 100)\n", + " (rnn): LSTM(100, 2048)\n", + " )\n", + " )\n", + " )\n", + " (word_dropout): WordDropout(p=0.05)\n", + " (locked_dropout): LockedDropout(p=0.5)\n", + " (embedding2nn): Linear(in_features=4196, out_features=4196, bias=True)\n", + " (rnn): LSTM(4196, 256, batch_first=True, bidirectional=True)\n", + " (linear): Linear(in_features=512, out_features=11, bias=True)\n", + " (loss_function): ViterbiLoss()\n", + " (crf): CRF()\n", + ")\"\n", + "2024-04-02 12:38:43,555 ----------------------------------------------------------------------------------------------------\n", + "2024-04-02 12:38:43,557 Corpus: 45 train + 16 dev + 3 test sentences\n", + "2024-04-02 12:38:43,558 ----------------------------------------------------------------------------------------------------\n", + "2024-04-02 12:38:43,560 Train: 61 sentences\n", + "2024-04-02 12:38:43,562 (train_with_dev=True, train_with_test=False)\n", + "2024-04-02 12:38:43,563 ----------------------------------------------------------------------------------------------------\n", + "2024-04-02 12:38:43,564 Training Params:\n", + "2024-04-02 12:38:43,565 - learning_rate: \"0.1\" \n", + "2024-04-02 12:38:43,566 - mini_batch_size: \"32\"\n", + "2024-04-02 12:38:43,567 - max_epochs: \"150\"\n", + "2024-04-02 12:38:43,568 - shuffle: \"True\"\n", + "2024-04-02 12:38:43,569 ----------------------------------------------------------------------------------------------------\n", + "2024-04-02 12:38:43,570 Plugins:\n", + "2024-04-02 12:38:43,571 - AnnealOnPlateau | patience: '3', anneal_factor: '0.5', min_learning_rate: '0.0001'\n", + "2024-04-02 12:38:43,572 ----------------------------------------------------------------------------------------------------\n", + "2024-04-02 12:38:43,573 Final evaluation on model from best epoch (best-model.pt)\n", + "2024-04-02 12:38:43,574 - metric: \"('micro avg', 'f1-score')\"\n", + "2024-04-02 12:38:43,575 ----------------------------------------------------------------------------------------------------\n", + "2024-04-02 12:38:43,576 Computation:\n", + "2024-04-02 12:38:43,577 - compute on device: cuda:0\n", + "2024-04-02 12:38:43,578 - embedding storage: cpu\n", + "2024-04-02 12:38:43,578 ----------------------------------------------------------------------------------------------------\n", + "2024-04-02 12:38:43,579 Model training base path: \"/content/drive/MyDrive/resources/taggers/ner-english\"\n", + "2024-04-02 12:38:43,580 ----------------------------------------------------------------------------------------------------\n", + "2024-04-02 12:38:43,581 ----------------------------------------------------------------------------------------------------\n", + "2024-04-02 12:38:44,976 epoch 1 - iter 1/2 - loss 3.44404515 - time (sec): 1.39 - samples/sec: 402.00 - lr: 0.100000 - momentum: 0.000000\n", + "2024-04-02 12:38:45,490 epoch 1 - iter 2/2 - loss 2.92139873 - time (sec): 1.91 - samples/sec: 569.80 - lr: 0.100000 - momentum: 0.000000\n", + "2024-04-02 12:38:45,492 ----------------------------------------------------------------------------------------------------\n", + "2024-04-02 12:38:45,494 EPOCH 1 done: loss 2.9214 - lr: 0.100000\n", + "2024-04-02 12:38:45,496 - 0 epochs without improvement\n", + "2024-04-02 12:38:45,498 ----------------------------------------------------------------------------------------------------\n", + "2024-04-02 12:38:45,597 epoch 2 - iter 1/2 - loss 1.28463274 - time (sec): 0.10 - samples/sec: 6158.11 - lr: 0.100000 - momentum: 0.000000\n", + "2024-04-02 12:38:45,672 epoch 2 - iter 2/2 - loss 1.07516005 - time (sec): 0.17 - samples/sec: 6349.58 - lr: 0.100000 - momentum: 0.000000\n", + "2024-04-02 12:38:45,673 ----------------------------------------------------------------------------------------------------\n", + "2024-04-02 12:38:45,676 EPOCH 2 done: loss 1.0752 - lr: 0.100000\n", + "2024-04-02 12:38:45,677 - 0 epochs without improvement\n", + "2024-04-02 12:38:45,679 ----------------------------------------------------------------------------------------------------\n", + "2024-04-02 12:38:45,753 epoch 3 - iter 1/2 - loss 0.69531815 - time (sec): 0.07 - samples/sec: 7510.14 - lr: 0.100000 - momentum: 0.000000\n", + "2024-04-02 12:38:45,845 epoch 3 - iter 2/2 - loss 0.70569185 - time (sec): 0.16 - samples/sec: 6627.54 - lr: 0.100000 - momentum: 0.000000\n", + "2024-04-02 12:38:45,847 ----------------------------------------------------------------------------------------------------\n", + "2024-04-02 12:38:45,850 EPOCH 3 done: loss 0.7057 - lr: 0.100000\n", + "2024-04-02 12:38:45,852 - 0 epochs without improvement\n", + "2024-04-02 12:38:45,854 ----------------------------------------------------------------------------------------------------\n", + "2024-04-02 12:38:45,948 epoch 4 - iter 1/2 - loss 0.65479236 - time (sec): 0.09 - samples/sec: 6255.63 - lr: 0.100000 - momentum: 0.000000\n", + "2024-04-02 12:38:46,022 epoch 4 - iter 2/2 - loss 0.67509532 - time (sec): 0.17 - samples/sec: 6535.21 - lr: 0.100000 - momentum: 0.000000\n", + "2024-04-02 12:38:46,024 ----------------------------------------------------------------------------------------------------\n", + "2024-04-02 12:38:46,027 EPOCH 4 done: loss 0.6751 - lr: 0.100000\n", + "2024-04-02 12:38:46,030 - 0 epochs without improvement\n", + "2024-04-02 12:38:46,032 ----------------------------------------------------------------------------------------------------\n", + "2024-04-02 12:38:46,131 epoch 5 - iter 1/2 - loss 0.64115141 - time (sec): 0.10 - samples/sec: 5984.08 - lr: 0.100000 - momentum: 0.000000\n", + "2024-04-02 12:38:46,206 epoch 5 - iter 2/2 - loss 0.64161874 - time (sec): 0.17 - samples/sec: 6370.44 - lr: 0.100000 - momentum: 0.000000\n", + "2024-04-02 12:38:46,207 ----------------------------------------------------------------------------------------------------\n", + "2024-04-02 12:38:46,210 EPOCH 5 done: loss 0.6416 - lr: 0.100000\n", + "2024-04-02 12:38:46,212 - 0 epochs without improvement\n", + "2024-04-02 12:38:46,215 ----------------------------------------------------------------------------------------------------\n", + "2024-04-02 12:38:46,310 epoch 6 - iter 1/2 - loss 0.58738084 - time (sec): 0.09 - samples/sec: 6258.22 - lr: 0.100000 - momentum: 0.000000\n", + "2024-04-02 12:38:46,385 epoch 6 - iter 2/2 - loss 0.59091217 - time (sec): 0.17 - samples/sec: 6477.29 - lr: 0.100000 - momentum: 0.000000\n", + "2024-04-02 12:38:46,387 ----------------------------------------------------------------------------------------------------\n", + "2024-04-02 12:38:46,389 EPOCH 6 done: loss 0.5909 - lr: 0.100000\n", + "2024-04-02 12:38:46,391 - 0 epochs without improvement\n", + "2024-04-02 12:38:46,393 ----------------------------------------------------------------------------------------------------\n", + "2024-04-02 12:38:46,480 epoch 7 - iter 1/2 - loss 0.55795262 - time (sec): 0.08 - samples/sec: 6800.72 - lr: 0.100000 - momentum: 0.000000\n", + "2024-04-02 12:38:46,571 epoch 7 - iter 2/2 - loss 0.58513366 - time (sec): 0.18 - samples/sec: 6187.30 - lr: 0.100000 - momentum: 0.000000\n", + "2024-04-02 12:38:46,573 ----------------------------------------------------------------------------------------------------\n", + "2024-04-02 12:38:46,575 EPOCH 7 done: loss 0.5851 - lr: 0.100000\n", + "2024-04-02 12:38:46,578 - 0 epochs without improvement\n", + "2024-04-02 12:38:46,580 ----------------------------------------------------------------------------------------------------\n", + "2024-04-02 12:38:46,664 epoch 8 - iter 1/2 - loss 0.50878422 - time (sec): 0.08 - samples/sec: 6799.65 - lr: 0.100000 - momentum: 0.000000\n", + "2024-04-02 12:38:46,754 epoch 8 - iter 2/2 - loss 0.54670745 - time (sec): 0.17 - samples/sec: 6304.28 - lr: 0.100000 - momentum: 0.000000\n", + "2024-04-02 12:38:46,757 ----------------------------------------------------------------------------------------------------\n", + "2024-04-02 12:38:46,759 EPOCH 8 done: loss 0.5467 - lr: 0.100000\n", + "2024-04-02 12:38:46,762 - 0 epochs without improvement\n", + "2024-04-02 12:38:46,764 ----------------------------------------------------------------------------------------------------\n", + "2024-04-02 12:38:46,862 epoch 9 - iter 1/2 - loss 0.42821300 - time (sec): 0.10 - samples/sec: 6373.38 - lr: 0.100000 - momentum: 0.000000\n", + "2024-04-02 12:38:46,933 epoch 9 - iter 2/2 - loss 0.54806942 - time (sec): 0.17 - samples/sec: 6544.42 - lr: 0.100000 - momentum: 0.000000\n", + "2024-04-02 12:38:46,935 ----------------------------------------------------------------------------------------------------\n", + "2024-04-02 12:38:46,937 EPOCH 9 done: loss 0.5481 - lr: 0.100000\n", + "2024-04-02 12:38:46,940 - 1 epochs without improvement\n", + "2024-04-02 12:38:46,942 ----------------------------------------------------------------------------------------------------\n", + "2024-04-02 12:38:47,021 epoch 10 - iter 1/2 - loss 0.47240739 - time (sec): 0.08 - samples/sec: 7317.90 - lr: 0.100000 - momentum: 0.000000\n", + "2024-04-02 12:38:47,110 epoch 10 - iter 2/2 - loss 0.50139522 - time (sec): 0.17 - samples/sec: 6507.94 - lr: 0.100000 - momentum: 0.000000\n", + "2024-04-02 12:38:47,112 ----------------------------------------------------------------------------------------------------\n", + "2024-04-02 12:38:47,115 EPOCH 10 done: loss 0.5014 - lr: 0.100000\n", + "2024-04-02 12:38:47,117 - 0 epochs without improvement\n", + "2024-04-02 12:38:47,119 ----------------------------------------------------------------------------------------------------\n", + "2024-04-02 12:38:47,219 epoch 11 - iter 1/2 - loss 0.44289096 - time (sec): 0.10 - samples/sec: 6106.63 - lr: 0.100000 - momentum: 0.000000\n", + "2024-04-02 12:38:47,297 epoch 11 - iter 2/2 - loss 0.47118983 - time (sec): 0.17 - samples/sec: 6227.87 - lr: 0.100000 - momentum: 0.000000\n", + "2024-04-02 12:38:47,299 ----------------------------------------------------------------------------------------------------\n", + "2024-04-02 12:38:47,301 EPOCH 11 done: loss 0.4712 - lr: 0.100000\n", + "2024-04-02 12:38:47,303 - 0 epochs without improvement\n", + "2024-04-02 12:38:47,306 ----------------------------------------------------------------------------------------------------\n", + "2024-04-02 12:38:47,405 epoch 12 - iter 1/2 - loss 0.42449305 - time (sec): 0.10 - samples/sec: 6091.96 - lr: 0.100000 - momentum: 0.000000\n", + "2024-04-02 12:38:47,510 epoch 12 - iter 2/2 - loss 0.45789551 - time (sec): 0.20 - samples/sec: 5407.34 - lr: 0.100000 - momentum: 0.000000\n", + "2024-04-02 12:38:47,512 ----------------------------------------------------------------------------------------------------\n", + "2024-04-02 12:38:47,514 EPOCH 12 done: loss 0.4579 - lr: 0.100000\n", + "2024-04-02 12:38:47,516 - 0 epochs without improvement\n", + "2024-04-02 12:38:47,518 ----------------------------------------------------------------------------------------------------\n", + "2024-04-02 12:38:47,596 epoch 13 - iter 1/2 - loss 0.44945066 - time (sec): 0.08 - samples/sec: 7236.94 - lr: 0.100000 - momentum: 0.000000\n", + "2024-04-02 12:38:47,692 epoch 13 - iter 2/2 - loss 0.44613633 - time (sec): 0.17 - samples/sec: 6291.01 - lr: 0.100000 - momentum: 0.000000\n", + "2024-04-02 12:38:47,694 ----------------------------------------------------------------------------------------------------\n", + "2024-04-02 12:38:47,696 EPOCH 13 done: loss 0.4461 - lr: 0.100000\n", + "2024-04-02 12:38:47,698 - 0 epochs without improvement\n", + "2024-04-02 12:38:47,700 ----------------------------------------------------------------------------------------------------\n", + "2024-04-02 12:38:47,779 epoch 14 - iter 1/2 - loss 0.38720482 - time (sec): 0.08 - samples/sec: 7137.44 - lr: 0.100000 - momentum: 0.000000\n", + "2024-04-02 12:38:47,873 epoch 14 - iter 2/2 - loss 0.42500368 - time (sec): 0.17 - samples/sec: 6353.72 - lr: 0.100000 - momentum: 0.000000\n", + "2024-04-02 12:38:47,874 ----------------------------------------------------------------------------------------------------\n", + "2024-04-02 12:38:47,877 EPOCH 14 done: loss 0.4250 - lr: 0.100000\n", + "2024-04-02 12:38:47,879 - 0 epochs without improvement\n", + "2024-04-02 12:38:47,881 ----------------------------------------------------------------------------------------------------\n", + "2024-04-02 12:38:47,979 epoch 15 - iter 1/2 - loss 0.41062502 - time (sec): 0.10 - samples/sec: 6093.96 - lr: 0.100000 - momentum: 0.000000\n", + "2024-04-02 12:38:48,056 epoch 15 - iter 2/2 - loss 0.42484871 - time (sec): 0.17 - samples/sec: 6298.04 - lr: 0.100000 - momentum: 0.000000\n", + "2024-04-02 12:38:48,057 ----------------------------------------------------------------------------------------------------\n", + "2024-04-02 12:38:48,059 EPOCH 15 done: loss 0.4248 - lr: 0.100000\n", + "2024-04-02 12:38:48,061 - 0 epochs without improvement\n", + "2024-04-02 12:38:48,063 ----------------------------------------------------------------------------------------------------\n", + "2024-04-02 12:38:48,164 epoch 16 - iter 1/2 - loss 0.42647916 - time (sec): 0.10 - samples/sec: 5824.25 - lr: 0.100000 - momentum: 0.000000\n", + "2024-04-02 12:38:48,243 epoch 16 - iter 2/2 - loss 0.41399557 - time (sec): 0.18 - samples/sec: 6146.45 - lr: 0.100000 - momentum: 0.000000\n", + "2024-04-02 12:38:48,245 ----------------------------------------------------------------------------------------------------\n", + "2024-04-02 12:38:48,247 EPOCH 16 done: loss 0.4140 - lr: 0.100000\n", + "2024-04-02 12:38:48,250 - 0 epochs without improvement\n", + "2024-04-02 12:38:48,252 ----------------------------------------------------------------------------------------------------\n", + "2024-04-02 12:38:48,334 epoch 17 - iter 1/2 - loss 0.39168397 - time (sec): 0.08 - samples/sec: 6976.05 - lr: 0.100000 - momentum: 0.000000\n", + "2024-04-02 12:38:48,427 epoch 17 - iter 2/2 - loss 0.39061826 - time (sec): 0.17 - samples/sec: 6309.59 - lr: 0.100000 - momentum: 0.000000\n", + "2024-04-02 12:38:48,428 ----------------------------------------------------------------------------------------------------\n", + "2024-04-02 12:38:48,431 EPOCH 17 done: loss 0.3906 - lr: 0.100000\n", + "2024-04-02 12:38:48,434 - 0 epochs without improvement\n", + "2024-04-02 12:38:48,436 ----------------------------------------------------------------------------------------------------\n", + "2024-04-02 12:38:48,527 epoch 18 - iter 1/2 - loss 0.40167976 - time (sec): 0.09 - samples/sec: 6566.29 - lr: 0.100000 - momentum: 0.000000\n", + "2024-04-02 12:38:48,619 epoch 18 - iter 2/2 - loss 0.37354796 - time (sec): 0.18 - samples/sec: 6027.18 - lr: 0.100000 - momentum: 0.000000\n", + "2024-04-02 12:38:48,621 ----------------------------------------------------------------------------------------------------\n", + "2024-04-02 12:38:48,623 EPOCH 18 done: loss 0.3735 - lr: 0.100000\n", + "2024-04-02 12:38:48,626 - 0 epochs without improvement\n", + "2024-04-02 12:38:48,628 ----------------------------------------------------------------------------------------------------\n", + "2024-04-02 12:38:48,729 epoch 19 - iter 1/2 - loss 0.35808818 - time (sec): 0.10 - samples/sec: 5792.09 - lr: 0.100000 - momentum: 0.000000\n", + "2024-04-02 12:38:48,810 epoch 19 - iter 2/2 - loss 0.36616759 - time (sec): 0.18 - samples/sec: 6064.52 - lr: 0.100000 - momentum: 0.000000\n", + "2024-04-02 12:38:48,812 ----------------------------------------------------------------------------------------------------\n", + "2024-04-02 12:38:48,815 EPOCH 19 done: loss 0.3662 - lr: 0.100000\n", + "2024-04-02 12:38:48,817 - 0 epochs without improvement\n", + "2024-04-02 12:38:48,820 ----------------------------------------------------------------------------------------------------\n", + "2024-04-02 12:38:48,921 epoch 20 - iter 1/2 - loss 0.34479054 - time (sec): 0.10 - samples/sec: 5643.94 - lr: 0.100000 - momentum: 0.000000\n", + "2024-04-02 12:38:49,003 epoch 20 - iter 2/2 - loss 0.34221306 - time (sec): 0.18 - samples/sec: 6013.25 - lr: 0.100000 - momentum: 0.000000\n", + "2024-04-02 12:38:49,004 ----------------------------------------------------------------------------------------------------\n", + "2024-04-02 12:38:49,008 EPOCH 20 done: loss 0.3422 - lr: 0.100000\n", + "2024-04-02 12:38:49,012 - 0 epochs without improvement\n", + "2024-04-02 12:38:49,014 ----------------------------------------------------------------------------------------------------\n", + "2024-04-02 12:38:49,112 epoch 21 - iter 1/2 - loss 0.32889740 - time (sec): 0.09 - samples/sec: 5996.51 - lr: 0.100000 - momentum: 0.000000\n", + "2024-04-02 12:38:49,192 epoch 21 - iter 2/2 - loss 0.33733788 - time (sec): 0.17 - samples/sec: 6216.19 - lr: 0.100000 - momentum: 0.000000\n", + "2024-04-02 12:38:49,195 ----------------------------------------------------------------------------------------------------\n", + "2024-04-02 12:38:49,198 EPOCH 21 done: loss 0.3373 - lr: 0.100000\n", + "2024-04-02 12:38:49,203 - 0 epochs without improvement\n", + "2024-04-02 12:38:49,208 ----------------------------------------------------------------------------------------------------\n", + "2024-04-02 12:38:49,306 epoch 22 - iter 1/2 - loss 0.27969826 - time (sec): 0.10 - samples/sec: 6196.75 - lr: 0.100000 - momentum: 0.000000\n", + "2024-04-02 12:38:49,386 epoch 22 - iter 2/2 - loss 0.32045580 - time (sec): 0.18 - samples/sec: 6186.06 - lr: 0.100000 - momentum: 0.000000\n", + "2024-04-02 12:38:49,388 ----------------------------------------------------------------------------------------------------\n", + "2024-04-02 12:38:49,390 EPOCH 22 done: loss 0.3205 - lr: 0.100000\n", + "2024-04-02 12:38:49,392 - 0 epochs without improvement\n", + "2024-04-02 12:38:49,395 ----------------------------------------------------------------------------------------------------\n", + "2024-04-02 12:38:49,504 epoch 23 - iter 1/2 - loss 0.30802871 - time (sec): 0.11 - samples/sec: 5234.59 - lr: 0.100000 - momentum: 0.000000\n", + "2024-04-02 12:38:49,586 epoch 23 - iter 2/2 - loss 0.32645577 - time (sec): 0.19 - samples/sec: 5728.11 - lr: 0.100000 - momentum: 0.000000\n", + "2024-04-02 12:38:49,589 ----------------------------------------------------------------------------------------------------\n", + "2024-04-02 12:38:49,591 EPOCH 23 done: loss 0.3265 - lr: 0.100000\n", + "2024-04-02 12:38:49,593 - 1 epochs without improvement\n", + "2024-04-02 12:38:49,595 ----------------------------------------------------------------------------------------------------\n", + "2024-04-02 12:38:49,678 epoch 24 - iter 1/2 - loss 0.29259292 - time (sec): 0.08 - samples/sec: 7146.77 - lr: 0.100000 - momentum: 0.000000\n", + "2024-04-02 12:38:49,772 epoch 24 - iter 2/2 - loss 0.28968734 - time (sec): 0.17 - samples/sec: 6245.59 - lr: 0.100000 - momentum: 0.000000\n", + "2024-04-02 12:38:49,773 ----------------------------------------------------------------------------------------------------\n", + "2024-04-02 12:38:49,776 EPOCH 24 done: loss 0.2897 - lr: 0.100000\n", + "2024-04-02 12:38:49,778 - 0 epochs without improvement\n", + "2024-04-02 12:38:49,781 ----------------------------------------------------------------------------------------------------\n", + "2024-04-02 12:38:49,882 epoch 25 - iter 1/2 - loss 0.26763737 - time (sec): 0.10 - samples/sec: 5888.06 - lr: 0.100000 - momentum: 0.000000\n", + "2024-04-02 12:38:49,964 epoch 25 - iter 2/2 - loss 0.30177488 - time (sec): 0.18 - samples/sec: 6028.73 - lr: 0.100000 - momentum: 0.000000\n", + "2024-04-02 12:38:49,965 ----------------------------------------------------------------------------------------------------\n", + "2024-04-02 12:38:49,968 EPOCH 25 done: loss 0.3018 - lr: 0.100000\n", + "2024-04-02 12:38:49,971 - 1 epochs without improvement\n", + "2024-04-02 12:38:49,973 ----------------------------------------------------------------------------------------------------\n", + "2024-04-02 12:38:50,070 epoch 26 - iter 1/2 - loss 0.26146290 - time (sec): 0.09 - samples/sec: 5978.86 - lr: 0.100000 - momentum: 0.000000\n", + "2024-04-02 12:38:50,149 epoch 26 - iter 2/2 - loss 0.27233112 - time (sec): 0.17 - samples/sec: 6300.31 - lr: 0.100000 - momentum: 0.000000\n", + "2024-04-02 12:38:50,150 ----------------------------------------------------------------------------------------------------\n", + "2024-04-02 12:38:50,154 EPOCH 26 done: loss 0.2723 - lr: 0.100000\n", + "2024-04-02 12:38:50,156 - 0 epochs without improvement\n", + "2024-04-02 12:38:50,158 ----------------------------------------------------------------------------------------------------\n", + "2024-04-02 12:38:50,255 epoch 27 - iter 1/2 - loss 0.24458568 - time (sec): 0.09 - samples/sec: 6267.43 - lr: 0.100000 - momentum: 0.000000\n", + "2024-04-02 12:38:50,341 epoch 27 - iter 2/2 - loss 0.26482273 - time (sec): 0.18 - samples/sec: 6030.94 - lr: 0.100000 - momentum: 0.000000\n", + "2024-04-02 12:38:50,343 ----------------------------------------------------------------------------------------------------\n", + "2024-04-02 12:38:50,345 EPOCH 27 done: loss 0.2648 - lr: 0.100000\n", + "2024-04-02 12:38:50,347 - 0 epochs without improvement\n", + "2024-04-02 12:38:50,350 ----------------------------------------------------------------------------------------------------\n", + "2024-04-02 12:38:50,432 epoch 28 - iter 1/2 - loss 0.25307725 - time (sec): 0.08 - samples/sec: 7351.31 - lr: 0.100000 - momentum: 0.000000\n", + "2024-04-02 12:38:50,538 epoch 28 - iter 2/2 - loss 0.25461486 - time (sec): 0.19 - samples/sec: 5841.93 - lr: 0.100000 - momentum: 0.000000\n", + "2024-04-02 12:38:50,540 ----------------------------------------------------------------------------------------------------\n", + "2024-04-02 12:38:50,542 EPOCH 28 done: loss 0.2546 - lr: 0.100000\n", + "2024-04-02 12:38:50,544 - 0 epochs without improvement\n", + "2024-04-02 12:38:50,546 ----------------------------------------------------------------------------------------------------\n", + "2024-04-02 12:38:50,626 epoch 29 - iter 1/2 - loss 0.26980714 - time (sec): 0.08 - samples/sec: 7002.56 - lr: 0.100000 - momentum: 0.000000\n", + "2024-04-02 12:38:50,725 epoch 29 - iter 2/2 - loss 0.24249902 - time (sec): 0.18 - samples/sec: 6163.12 - lr: 0.100000 - momentum: 0.000000\n", + "2024-04-02 12:38:50,727 ----------------------------------------------------------------------------------------------------\n", + "2024-04-02 12:38:50,729 EPOCH 29 done: loss 0.2425 - lr: 0.100000\n", + "2024-04-02 12:38:50,731 - 0 epochs without improvement\n", + "2024-04-02 12:38:50,733 ----------------------------------------------------------------------------------------------------\n", + "2024-04-02 12:38:50,814 epoch 30 - iter 1/2 - loss 0.19740648 - time (sec): 0.08 - samples/sec: 7302.75 - lr: 0.100000 - momentum: 0.000000\n", + "2024-04-02 12:38:50,909 epoch 30 - iter 2/2 - loss 0.23087483 - time (sec): 0.17 - samples/sec: 6274.14 - lr: 0.100000 - momentum: 0.000000\n", + "2024-04-02 12:38:50,910 ----------------------------------------------------------------------------------------------------\n", + "2024-04-02 12:38:50,913 EPOCH 30 done: loss 0.2309 - lr: 0.100000\n", + "2024-04-02 12:38:50,915 - 0 epochs without improvement\n", + "2024-04-02 12:38:50,917 ----------------------------------------------------------------------------------------------------\n", + "2024-04-02 12:38:51,013 epoch 31 - iter 1/2 - loss 0.23110126 - time (sec): 0.09 - samples/sec: 5975.11 - lr: 0.100000 - momentum: 0.000000\n", + "2024-04-02 12:38:51,100 epoch 31 - iter 2/2 - loss 0.22741171 - time (sec): 0.18 - samples/sec: 6028.79 - lr: 0.100000 - momentum: 0.000000\n", + "2024-04-02 12:38:51,102 ----------------------------------------------------------------------------------------------------\n", + "2024-04-02 12:38:51,104 EPOCH 31 done: loss 0.2274 - lr: 0.100000\n", + "2024-04-02 12:38:51,106 - 0 epochs without improvement\n", + "2024-04-02 12:38:51,108 ----------------------------------------------------------------------------------------------------\n", + "2024-04-02 12:38:51,211 epoch 32 - iter 1/2 - loss 0.24045745 - time (sec): 0.10 - samples/sec: 5865.59 - lr: 0.100000 - momentum: 0.000000\n", + "2024-04-02 12:38:51,292 epoch 32 - iter 2/2 - loss 0.25111941 - time (sec): 0.18 - samples/sec: 5985.53 - lr: 0.100000 - momentum: 0.000000\n", + "2024-04-02 12:38:51,293 ----------------------------------------------------------------------------------------------------\n", + "2024-04-02 12:38:51,295 EPOCH 32 done: loss 0.2511 - lr: 0.100000\n", + "2024-04-02 12:38:51,297 - 1 epochs without improvement\n", + "2024-04-02 12:38:51,299 ----------------------------------------------------------------------------------------------------\n", + "2024-04-02 12:38:51,400 epoch 33 - iter 1/2 - loss 0.21789198 - time (sec): 0.10 - samples/sec: 5989.39 - lr: 0.100000 - momentum: 0.000000\n", + "2024-04-02 12:38:51,480 epoch 33 - iter 2/2 - loss 0.22149147 - time (sec): 0.18 - samples/sec: 6080.23 - lr: 0.100000 - momentum: 0.000000\n", + "2024-04-02 12:38:51,482 ----------------------------------------------------------------------------------------------------\n", + "2024-04-02 12:38:51,484 EPOCH 33 done: loss 0.2215 - lr: 0.100000\n", + "2024-04-02 12:38:51,486 - 0 epochs without improvement\n", + "2024-04-02 12:38:51,488 ----------------------------------------------------------------------------------------------------\n", + "2024-04-02 12:38:51,595 epoch 34 - iter 1/2 - loss 0.23112546 - time (sec): 0.10 - samples/sec: 5508.79 - lr: 0.100000 - momentum: 0.000000\n", + "2024-04-02 12:38:51,682 epoch 34 - iter 2/2 - loss 0.22252127 - time (sec): 0.19 - samples/sec: 5682.85 - lr: 0.100000 - momentum: 0.000000\n", + "2024-04-02 12:38:51,684 ----------------------------------------------------------------------------------------------------\n", + "2024-04-02 12:38:51,687 EPOCH 34 done: loss 0.2225 - lr: 0.100000\n", + "2024-04-02 12:38:51,689 - 1 epochs without improvement\n", + "2024-04-02 12:38:51,691 ----------------------------------------------------------------------------------------------------\n", + "2024-04-02 12:38:51,770 epoch 35 - iter 1/2 - loss 0.21186577 - time (sec): 0.08 - samples/sec: 7131.70 - lr: 0.100000 - momentum: 0.000000\n", + "2024-04-02 12:38:51,871 epoch 35 - iter 2/2 - loss 0.21989569 - time (sec): 0.18 - samples/sec: 6117.52 - lr: 0.100000 - momentum: 0.000000\n", + "2024-04-02 12:38:51,873 ----------------------------------------------------------------------------------------------------\n", + "2024-04-02 12:38:51,876 EPOCH 35 done: loss 0.2199 - lr: 0.100000\n", + "2024-04-02 12:38:51,878 - 0 epochs without improvement\n", + "2024-04-02 12:38:51,880 ----------------------------------------------------------------------------------------------------\n", + "2024-04-02 12:38:51,962 epoch 36 - iter 1/2 - loss 0.24179878 - time (sec): 0.08 - samples/sec: 7033.68 - lr: 0.100000 - momentum: 0.000000\n", + "2024-04-02 12:38:52,059 epoch 36 - iter 2/2 - loss 0.20401711 - time (sec): 0.18 - samples/sec: 6140.66 - lr: 0.100000 - momentum: 0.000000\n", + "2024-04-02 12:38:52,061 ----------------------------------------------------------------------------------------------------\n", + "2024-04-02 12:38:52,063 EPOCH 36 done: loss 0.2040 - lr: 0.100000\n", + "2024-04-02 12:38:52,065 - 0 epochs without improvement\n", + "2024-04-02 12:38:52,068 ----------------------------------------------------------------------------------------------------\n", + "2024-04-02 12:38:52,150 epoch 37 - iter 1/2 - loss 0.20632705 - time (sec): 0.08 - samples/sec: 6811.88 - lr: 0.100000 - momentum: 0.000000\n", + "2024-04-02 12:38:52,248 epoch 37 - iter 2/2 - loss 0.21099051 - time (sec): 0.18 - samples/sec: 6095.13 - lr: 0.100000 - momentum: 0.000000\n", + "2024-04-02 12:38:52,250 ----------------------------------------------------------------------------------------------------\n", + "2024-04-02 12:38:52,253 EPOCH 37 done: loss 0.2110 - lr: 0.100000\n", + "2024-04-02 12:38:52,255 - 1 epochs without improvement\n", + "2024-04-02 12:38:52,257 ----------------------------------------------------------------------------------------------------\n", + "2024-04-02 12:38:52,358 epoch 38 - iter 1/2 - loss 0.18219516 - time (sec): 0.10 - samples/sec: 6054.16 - lr: 0.100000 - momentum: 0.000000\n", + "2024-04-02 12:38:52,444 epoch 38 - iter 2/2 - loss 0.20445531 - time (sec): 0.18 - samples/sec: 5895.79 - lr: 0.100000 - momentum: 0.000000\n", + "2024-04-02 12:38:52,447 ----------------------------------------------------------------------------------------------------\n", + "2024-04-02 12:38:52,449 EPOCH 38 done: loss 0.2045 - lr: 0.100000\n", + "2024-04-02 12:38:52,451 - 2 epochs without improvement\n", + "2024-04-02 12:38:52,453 ----------------------------------------------------------------------------------------------------\n", + "2024-04-02 12:38:52,561 epoch 39 - iter 1/2 - loss 0.22816141 - time (sec): 0.11 - samples/sec: 5549.30 - lr: 0.100000 - momentum: 0.000000\n", + "2024-04-02 12:38:52,651 epoch 39 - iter 2/2 - loss 0.19591870 - time (sec): 0.20 - samples/sec: 5542.28 - lr: 0.100000 - momentum: 0.000000\n", + "2024-04-02 12:38:52,653 ----------------------------------------------------------------------------------------------------\n", + "2024-04-02 12:38:52,655 EPOCH 39 done: loss 0.1959 - lr: 0.100000\n", + "2024-04-02 12:38:52,658 - 0 epochs without improvement\n", + "2024-04-02 12:38:52,664 ----------------------------------------------------------------------------------------------------\n", + "2024-04-02 12:38:52,739 epoch 40 - iter 1/2 - loss 0.20606261 - time (sec): 0.07 - samples/sec: 7483.91 - lr: 0.100000 - momentum: 0.000000\n", + "2024-04-02 12:38:52,836 epoch 40 - iter 2/2 - loss 0.19719533 - time (sec): 0.17 - samples/sec: 6357.67 - lr: 0.100000 - momentum: 0.000000\n", + "2024-04-02 12:38:52,838 ----------------------------------------------------------------------------------------------------\n", + "2024-04-02 12:38:52,840 EPOCH 40 done: loss 0.1972 - lr: 0.100000\n", + "2024-04-02 12:38:52,842 - 1 epochs without improvement\n", + "2024-04-02 12:38:52,844 ----------------------------------------------------------------------------------------------------\n", + "2024-04-02 12:38:52,946 epoch 41 - iter 1/2 - loss 0.19984477 - time (sec): 0.10 - samples/sec: 5879.62 - lr: 0.100000 - momentum: 0.000000\n", + "2024-04-02 12:38:53,025 epoch 41 - iter 2/2 - loss 0.20566837 - time (sec): 0.18 - samples/sec: 6056.58 - lr: 0.100000 - momentum: 0.000000\n", + "2024-04-02 12:38:53,027 ----------------------------------------------------------------------------------------------------\n", + "2024-04-02 12:38:53,031 EPOCH 41 done: loss 0.2057 - lr: 0.100000\n", + "2024-04-02 12:38:53,034 - 2 epochs without improvement\n", + "2024-04-02 12:38:53,036 ----------------------------------------------------------------------------------------------------\n", + "2024-04-02 12:38:53,136 epoch 42 - iter 1/2 - loss 0.18924362 - time (sec): 0.10 - samples/sec: 5850.44 - lr: 0.100000 - momentum: 0.000000\n", + "2024-04-02 12:38:53,215 epoch 42 - iter 2/2 - loss 0.20212508 - time (sec): 0.18 - samples/sec: 6141.99 - lr: 0.100000 - momentum: 0.000000\n", + "2024-04-02 12:38:53,217 ----------------------------------------------------------------------------------------------------\n", + "2024-04-02 12:38:53,219 EPOCH 42 done: loss 0.2021 - lr: 0.100000\n", + "2024-04-02 12:38:53,222 - 3 epochs without improvement\n", + "2024-04-02 12:38:53,224 ----------------------------------------------------------------------------------------------------\n", + "2024-04-02 12:38:53,306 epoch 43 - iter 1/2 - loss 0.20068359 - time (sec): 0.08 - samples/sec: 7153.91 - lr: 0.100000 - momentum: 0.000000\n", + "2024-04-02 12:38:53,401 epoch 43 - iter 2/2 - loss 0.17652243 - time (sec): 0.18 - samples/sec: 6209.30 - lr: 0.100000 - momentum: 0.000000\n", + "2024-04-02 12:38:53,403 ----------------------------------------------------------------------------------------------------\n", + "2024-04-02 12:38:53,405 EPOCH 43 done: loss 0.1765 - lr: 0.100000\n", + "2024-04-02 12:38:53,407 - 0 epochs without improvement\n", + "2024-04-02 12:38:53,410 ----------------------------------------------------------------------------------------------------\n", + "2024-04-02 12:38:53,488 epoch 44 - iter 1/2 - loss 0.15478516 - time (sec): 0.08 - samples/sec: 7239.23 - lr: 0.100000 - momentum: 0.000000\n", + "2024-04-02 12:38:53,595 epoch 44 - iter 2/2 - loss 0.17919922 - time (sec): 0.18 - samples/sec: 5938.84 - lr: 0.100000 - momentum: 0.000000\n", + "2024-04-02 12:38:53,597 ----------------------------------------------------------------------------------------------------\n", + "2024-04-02 12:38:53,599 EPOCH 44 done: loss 0.1792 - lr: 0.100000\n", + "2024-04-02 12:38:53,600 - 1 epochs without improvement\n", + "2024-04-02 12:38:53,602 ----------------------------------------------------------------------------------------------------\n", + "2024-04-02 12:38:53,685 epoch 45 - iter 1/2 - loss 0.17908520 - time (sec): 0.08 - samples/sec: 6931.02 - lr: 0.100000 - momentum: 0.000000\n", + "2024-04-02 12:38:53,785 epoch 45 - iter 2/2 - loss 0.18064003 - time (sec): 0.18 - samples/sec: 6005.46 - lr: 0.100000 - momentum: 0.000000\n", + "2024-04-02 12:38:53,788 ----------------------------------------------------------------------------------------------------\n", + "2024-04-02 12:38:53,790 EPOCH 45 done: loss 0.1806 - lr: 0.100000\n", + "2024-04-02 12:38:53,795 - 2 epochs without improvement\n", + "2024-04-02 12:38:53,797 ----------------------------------------------------------------------------------------------------\n", + "2024-04-02 12:38:53,902 epoch 46 - iter 1/2 - loss 0.15840863 - time (sec): 0.10 - samples/sec: 6008.01 - lr: 0.100000 - momentum: 0.000000\n", + "2024-04-02 12:38:53,980 epoch 46 - iter 2/2 - loss 0.18372312 - time (sec): 0.18 - samples/sec: 6019.85 - lr: 0.100000 - momentum: 0.000000\n", + "2024-04-02 12:38:53,982 ----------------------------------------------------------------------------------------------------\n", + "2024-04-02 12:38:53,984 EPOCH 46 done: loss 0.1837 - lr: 0.100000\n", + "2024-04-02 12:38:53,986 - 3 epochs without improvement\n", + "2024-04-02 12:38:53,988 ----------------------------------------------------------------------------------------------------\n", + "2024-04-02 12:38:54,088 epoch 47 - iter 1/2 - loss 0.17463030 - time (sec): 0.10 - samples/sec: 6164.60 - lr: 0.100000 - momentum: 0.000000\n", + "2024-04-02 12:38:54,167 epoch 47 - iter 2/2 - loss 0.17576261 - time (sec): 0.18 - samples/sec: 6179.81 - lr: 0.100000 - momentum: 0.000000\n", + "2024-04-02 12:38:54,168 ----------------------------------------------------------------------------------------------------\n", + "2024-04-02 12:38:54,170 EPOCH 47 done: loss 0.1758 - lr: 0.100000\n", + "2024-04-02 12:38:54,173 - 0 epochs without improvement\n", + "2024-04-02 12:38:54,175 ----------------------------------------------------------------------------------------------------\n", + "2024-04-02 12:38:54,258 epoch 48 - iter 1/2 - loss 0.13366355 - time (sec): 0.08 - samples/sec: 7025.57 - lr: 0.100000 - momentum: 0.000000\n", + "2024-04-02 12:38:54,353 epoch 48 - iter 2/2 - loss 0.17624550 - time (sec): 0.18 - samples/sec: 6159.30 - lr: 0.100000 - momentum: 0.000000\n", + "2024-04-02 12:38:54,355 ----------------------------------------------------------------------------------------------------\n", + "2024-04-02 12:38:54,357 EPOCH 48 done: loss 0.1762 - lr: 0.100000\n", + "2024-04-02 12:38:54,359 - 1 epochs without improvement\n", + "2024-04-02 12:38:54,361 ----------------------------------------------------------------------------------------------------\n", + "2024-04-02 12:38:54,466 epoch 49 - iter 1/2 - loss 0.15727480 - time (sec): 0.10 - samples/sec: 5638.24 - lr: 0.100000 - momentum: 0.000000\n", + "2024-04-02 12:38:54,574 epoch 49 - iter 2/2 - loss 0.17193385 - time (sec): 0.21 - samples/sec: 5155.73 - lr: 0.100000 - momentum: 0.000000\n", + "2024-04-02 12:38:54,579 ----------------------------------------------------------------------------------------------------\n", + "2024-04-02 12:38:54,580 EPOCH 49 done: loss 0.1719 - lr: 0.100000\n", + "2024-04-02 12:38:54,581 - 0 epochs without improvement\n", + "2024-04-02 12:38:54,583 ----------------------------------------------------------------------------------------------------\n", + "2024-04-02 12:38:54,730 epoch 50 - iter 1/2 - loss 0.14977512 - time (sec): 0.15 - samples/sec: 3910.86 - lr: 0.100000 - momentum: 0.000000\n", + "2024-04-02 12:38:54,844 epoch 50 - iter 2/2 - loss 0.15545896 - time (sec): 0.26 - samples/sec: 4200.34 - lr: 0.100000 - momentum: 0.000000\n", + "2024-04-02 12:38:54,849 ----------------------------------------------------------------------------------------------------\n", + "2024-04-02 12:38:54,853 EPOCH 50 done: loss 0.1555 - lr: 0.100000\n", + "2024-04-02 12:38:54,854 - 0 epochs without improvement\n", + "2024-04-02 12:38:54,859 ----------------------------------------------------------------------------------------------------\n", + "2024-04-02 12:38:55,000 epoch 51 - iter 1/2 - loss 0.15834969 - time (sec): 0.14 - samples/sec: 4268.16 - lr: 0.100000 - momentum: 0.000000\n", + "2024-04-02 12:38:55,096 epoch 51 - iter 2/2 - loss 0.15354020 - time (sec): 0.23 - samples/sec: 4634.39 - lr: 0.100000 - momentum: 0.000000\n", + "2024-04-02 12:38:55,098 ----------------------------------------------------------------------------------------------------\n", + "2024-04-02 12:38:55,099 EPOCH 51 done: loss 0.1535 - lr: 0.100000\n", + "2024-04-02 12:38:55,102 - 0 epochs without improvement\n", + "2024-04-02 12:38:55,104 ----------------------------------------------------------------------------------------------------\n", + "2024-04-02 12:38:55,235 epoch 52 - iter 1/2 - loss 0.14571885 - time (sec): 0.13 - samples/sec: 4605.82 - lr: 0.100000 - momentum: 0.000000\n", + "2024-04-02 12:38:55,340 epoch 52 - iter 2/2 - loss 0.15986135 - time (sec): 0.23 - samples/sec: 4671.90 - lr: 0.100000 - momentum: 0.000000\n", + "2024-04-02 12:38:55,342 ----------------------------------------------------------------------------------------------------\n", + "2024-04-02 12:38:55,344 EPOCH 52 done: loss 0.1599 - lr: 0.100000\n", + "2024-04-02 12:38:55,346 - 1 epochs without improvement\n", + "2024-04-02 12:38:55,348 ----------------------------------------------------------------------------------------------------\n", + "2024-04-02 12:38:55,480 epoch 53 - iter 1/2 - loss 0.10458194 - time (sec): 0.13 - samples/sec: 4550.62 - lr: 0.100000 - momentum: 0.000000\n", + "2024-04-02 12:38:55,582 epoch 53 - iter 2/2 - loss 0.12304710 - time (sec): 0.23 - samples/sec: 4678.70 - lr: 0.100000 - momentum: 0.000000\n", + "2024-04-02 12:38:55,585 ----------------------------------------------------------------------------------------------------\n", + "2024-04-02 12:38:55,586 EPOCH 53 done: loss 0.1230 - lr: 0.100000\n", + "2024-04-02 12:38:55,588 - 0 epochs without improvement\n", + "2024-04-02 12:38:55,590 ----------------------------------------------------------------------------------------------------\n", + "2024-04-02 12:38:55,713 epoch 54 - iter 1/2 - loss 0.16139668 - time (sec): 0.12 - samples/sec: 4894.67 - lr: 0.100000 - momentum: 0.000000\n", + "2024-04-02 12:38:55,851 epoch 54 - iter 2/2 - loss 0.14513430 - time (sec): 0.26 - samples/sec: 4198.29 - lr: 0.100000 - momentum: 0.000000\n", + "2024-04-02 12:38:55,853 ----------------------------------------------------------------------------------------------------\n", + "2024-04-02 12:38:55,855 EPOCH 54 done: loss 0.1451 - lr: 0.100000\n", + "2024-04-02 12:38:55,858 - 1 epochs without improvement\n", + "2024-04-02 12:38:55,860 ----------------------------------------------------------------------------------------------------\n", + "2024-04-02 12:38:55,965 epoch 55 - iter 1/2 - loss 0.18373649 - time (sec): 0.10 - samples/sec: 5480.08 - lr: 0.100000 - momentum: 0.000000\n", + "2024-04-02 12:38:56,107 epoch 55 - iter 2/2 - loss 0.16968290 - time (sec): 0.24 - samples/sec: 4449.06 - lr: 0.100000 - momentum: 0.000000\n", + "2024-04-02 12:38:56,109 ----------------------------------------------------------------------------------------------------\n", + "2024-04-02 12:38:56,111 EPOCH 55 done: loss 0.1697 - lr: 0.100000\n", + "2024-04-02 12:38:56,114 - 2 epochs without improvement\n", + "2024-04-02 12:38:56,116 ----------------------------------------------------------------------------------------------------\n", + "2024-04-02 12:38:56,269 epoch 56 - iter 1/2 - loss 0.14895640 - time (sec): 0.15 - samples/sec: 3905.18 - lr: 0.100000 - momentum: 0.000000\n", + "2024-04-02 12:38:56,380 epoch 56 - iter 2/2 - loss 0.14475585 - time (sec): 0.26 - samples/sec: 4139.29 - lr: 0.100000 - momentum: 0.000000\n", + "2024-04-02 12:38:56,383 ----------------------------------------------------------------------------------------------------\n", + "2024-04-02 12:38:56,385 EPOCH 56 done: loss 0.1448 - lr: 0.100000\n", + "2024-04-02 12:38:56,387 - 3 epochs without improvement\n", + "2024-04-02 12:38:56,389 ----------------------------------------------------------------------------------------------------\n", + "2024-04-02 12:38:56,504 epoch 57 - iter 1/2 - loss 0.15683315 - time (sec): 0.11 - samples/sec: 4974.73 - lr: 0.100000 - momentum: 0.000000\n", + "2024-04-02 12:38:56,609 epoch 57 - iter 2/2 - loss 0.14270435 - time (sec): 0.22 - samples/sec: 4993.55 - lr: 0.100000 - momentum: 0.000000\n", + "2024-04-02 12:38:56,610 ----------------------------------------------------------------------------------------------------\n", + "2024-04-02 12:38:56,613 EPOCH 57 done: loss 0.1427 - lr: 0.100000\n", + "2024-04-02 12:38:56,616 - 4 epochs without improvement (above 'patience')-> annealing learning_rate to [0.05]\n", + "2024-04-02 12:38:56,617 ----------------------------------------------------------------------------------------------------\n", + "2024-04-02 12:38:56,734 epoch 58 - iter 1/2 - loss 0.14036764 - time (sec): 0.11 - samples/sec: 4821.27 - lr: 0.050000 - momentum: 0.000000\n", + "2024-04-02 12:38:56,824 epoch 58 - iter 2/2 - loss 0.12033280 - time (sec): 0.21 - samples/sec: 5295.05 - lr: 0.050000 - momentum: 0.000000\n", + "2024-04-02 12:38:56,826 ----------------------------------------------------------------------------------------------------\n", + "2024-04-02 12:38:56,828 EPOCH 58 done: loss 0.1203 - lr: 0.050000\n", + "2024-04-02 12:38:56,830 - 0 epochs without improvement\n", + "2024-04-02 12:38:56,832 ----------------------------------------------------------------------------------------------------\n", + "2024-04-02 12:38:56,917 epoch 59 - iter 1/2 - loss 0.11941228 - time (sec): 0.08 - samples/sec: 6737.79 - lr: 0.050000 - momentum: 0.000000\n", + "2024-04-02 12:38:57,016 epoch 59 - iter 2/2 - loss 0.11664262 - time (sec): 0.18 - samples/sec: 5949.76 - lr: 0.050000 - momentum: 0.000000\n", + "2024-04-02 12:38:57,018 ----------------------------------------------------------------------------------------------------\n", + "2024-04-02 12:38:57,020 EPOCH 59 done: loss 0.1166 - lr: 0.050000\n", + "2024-04-02 12:38:57,022 - 0 epochs without improvement\n", + "2024-04-02 12:38:57,024 ----------------------------------------------------------------------------------------------------\n", + "2024-04-02 12:38:57,109 epoch 60 - iter 1/2 - loss 0.09714617 - time (sec): 0.08 - samples/sec: 6770.29 - lr: 0.050000 - momentum: 0.000000\n", + "2024-04-02 12:38:57,211 epoch 60 - iter 2/2 - loss 0.11093283 - time (sec): 0.18 - samples/sec: 5897.83 - lr: 0.050000 - momentum: 0.000000\n", + "2024-04-02 12:38:57,213 ----------------------------------------------------------------------------------------------------\n", + "2024-04-02 12:38:57,215 EPOCH 60 done: loss 0.1109 - lr: 0.050000\n", + "2024-04-02 12:38:57,217 - 0 epochs without improvement\n", + "2024-04-02 12:38:57,218 ----------------------------------------------------------------------------------------------------\n", + "2024-04-02 12:38:57,325 epoch 61 - iter 1/2 - loss 0.11121512 - time (sec): 0.11 - samples/sec: 5487.88 - lr: 0.050000 - momentum: 0.000000\n", + "2024-04-02 12:38:57,409 epoch 61 - iter 2/2 - loss 0.11645126 - time (sec): 0.19 - samples/sec: 5730.14 - lr: 0.050000 - momentum: 0.000000\n", + "2024-04-02 12:38:57,411 ----------------------------------------------------------------------------------------------------\n", + "2024-04-02 12:38:57,413 EPOCH 61 done: loss 0.1165 - lr: 0.050000\n", + "2024-04-02 12:38:57,415 - 1 epochs without improvement\n", + "2024-04-02 12:38:57,417 ----------------------------------------------------------------------------------------------------\n", + "2024-04-02 12:38:57,500 epoch 62 - iter 1/2 - loss 0.13044009 - time (sec): 0.08 - samples/sec: 6848.41 - lr: 0.050000 - momentum: 0.000000\n", + "2024-04-02 12:38:57,598 epoch 62 - iter 2/2 - loss 0.11779617 - time (sec): 0.18 - samples/sec: 6077.83 - lr: 0.050000 - momentum: 0.000000\n", + "2024-04-02 12:38:57,600 ----------------------------------------------------------------------------------------------------\n", + "2024-04-02 12:38:57,602 EPOCH 62 done: loss 0.1178 - lr: 0.050000\n", + "2024-04-02 12:38:57,603 - 2 epochs without improvement\n", + "2024-04-02 12:38:57,605 ----------------------------------------------------------------------------------------------------\n", + "2024-04-02 12:38:57,707 epoch 63 - iter 1/2 - loss 0.10047390 - time (sec): 0.10 - samples/sec: 5865.93 - lr: 0.050000 - momentum: 0.000000\n", + "2024-04-02 12:38:57,794 epoch 63 - iter 2/2 - loss 0.11731148 - time (sec): 0.19 - samples/sec: 5841.52 - lr: 0.050000 - momentum: 0.000000\n", + "2024-04-02 12:38:57,795 ----------------------------------------------------------------------------------------------------\n", + "2024-04-02 12:38:57,798 EPOCH 63 done: loss 0.1173 - lr: 0.050000\n", + "2024-04-02 12:38:57,801 - 3 epochs without improvement\n", + "2024-04-02 12:38:57,805 ----------------------------------------------------------------------------------------------------\n", + "2024-04-02 12:38:57,880 epoch 64 - iter 1/2 - loss 0.10613811 - time (sec): 0.07 - samples/sec: 7459.84 - lr: 0.050000 - momentum: 0.000000\n", + "2024-04-02 12:38:57,978 epoch 64 - iter 2/2 - loss 0.10944687 - time (sec): 0.17 - samples/sec: 6387.11 - lr: 0.050000 - momentum: 0.000000\n", + "2024-04-02 12:38:57,979 ----------------------------------------------------------------------------------------------------\n", + "2024-04-02 12:38:57,982 EPOCH 64 done: loss 0.1094 - lr: 0.050000\n", + "2024-04-02 12:38:57,984 - 0 epochs without improvement\n", + "2024-04-02 12:38:57,986 ----------------------------------------------------------------------------------------------------\n", + "2024-04-02 12:38:58,069 epoch 65 - iter 1/2 - loss 0.13350388 - time (sec): 0.08 - samples/sec: 7159.80 - lr: 0.050000 - momentum: 0.000000\n", + "2024-04-02 12:38:58,167 epoch 65 - iter 2/2 - loss 0.10426040 - time (sec): 0.18 - samples/sec: 6064.69 - lr: 0.050000 - momentum: 0.000000\n", + "2024-04-02 12:38:58,169 ----------------------------------------------------------------------------------------------------\n", + "2024-04-02 12:38:58,171 EPOCH 65 done: loss 0.1043 - lr: 0.050000\n", + "2024-04-02 12:38:58,173 - 0 epochs without improvement\n", + "2024-04-02 12:38:58,176 ----------------------------------------------------------------------------------------------------\n", + "2024-04-02 12:38:58,254 epoch 66 - iter 1/2 - loss 0.07423303 - time (sec): 0.08 - samples/sec: 7207.75 - lr: 0.050000 - momentum: 0.000000\n", + "2024-04-02 12:38:58,350 epoch 66 - iter 2/2 - loss 0.09263823 - time (sec): 0.17 - samples/sec: 6322.38 - lr: 0.050000 - momentum: 0.000000\n", + "2024-04-02 12:38:58,351 ----------------------------------------------------------------------------------------------------\n", + "2024-04-02 12:38:58,354 EPOCH 66 done: loss 0.0926 - lr: 0.050000\n", + "2024-04-02 12:38:58,356 - 0 epochs without improvement\n", + "2024-04-02 12:38:58,358 ----------------------------------------------------------------------------------------------------\n", + "2024-04-02 12:38:58,462 epoch 67 - iter 1/2 - loss 0.08090147 - time (sec): 0.10 - samples/sec: 5731.48 - lr: 0.050000 - momentum: 0.000000\n", + "2024-04-02 12:38:58,545 epoch 67 - iter 2/2 - loss 0.09237679 - time (sec): 0.18 - samples/sec: 5896.55 - lr: 0.050000 - momentum: 0.000000\n", + "2024-04-02 12:38:58,546 ----------------------------------------------------------------------------------------------------\n", + "2024-04-02 12:38:58,549 EPOCH 67 done: loss 0.0924 - lr: 0.050000\n", + "2024-04-02 12:38:58,551 - 0 epochs without improvement\n", + "2024-04-02 12:38:58,553 ----------------------------------------------------------------------------------------------------\n", + "2024-04-02 12:38:58,653 epoch 68 - iter 1/2 - loss 0.09407286 - time (sec): 0.10 - samples/sec: 6222.91 - lr: 0.050000 - momentum: 0.000000\n", + "2024-04-02 12:38:58,731 epoch 68 - iter 2/2 - loss 0.10339344 - time (sec): 0.18 - samples/sec: 6188.13 - lr: 0.050000 - momentum: 0.000000\n", + "2024-04-02 12:38:58,733 ----------------------------------------------------------------------------------------------------\n", + "2024-04-02 12:38:58,735 EPOCH 68 done: loss 0.1034 - lr: 0.050000\n", + "2024-04-02 12:38:58,737 - 1 epochs without improvement\n", + "2024-04-02 12:38:58,740 ----------------------------------------------------------------------------------------------------\n", + "2024-04-02 12:38:58,850 epoch 69 - iter 1/2 - loss 0.09276591 - time (sec): 0.11 - samples/sec: 5410.58 - lr: 0.050000 - momentum: 0.000000\n", + "2024-04-02 12:38:58,929 epoch 69 - iter 2/2 - loss 0.08267720 - time (sec): 0.19 - samples/sec: 5808.62 - lr: 0.050000 - momentum: 0.000000\n", + "2024-04-02 12:38:58,930 ----------------------------------------------------------------------------------------------------\n", + "2024-04-02 12:38:58,933 EPOCH 69 done: loss 0.0827 - lr: 0.050000\n", + "2024-04-02 12:38:58,936 - 0 epochs without improvement\n", + "2024-04-02 12:38:58,938 ----------------------------------------------------------------------------------------------------\n", + "2024-04-02 12:38:59,040 epoch 70 - iter 1/2 - loss 0.10548705 - time (sec): 0.10 - samples/sec: 5882.08 - lr: 0.050000 - momentum: 0.000000\n", + "2024-04-02 12:38:59,121 epoch 70 - iter 2/2 - loss 0.09925675 - time (sec): 0.18 - samples/sec: 6022.49 - lr: 0.050000 - momentum: 0.000000\n", + "2024-04-02 12:38:59,123 ----------------------------------------------------------------------------------------------------\n", + "2024-04-02 12:38:59,125 EPOCH 70 done: loss 0.0993 - lr: 0.050000\n", + "2024-04-02 12:38:59,128 - 1 epochs without improvement\n", + "2024-04-02 12:38:59,130 ----------------------------------------------------------------------------------------------------\n", + "2024-04-02 12:38:59,210 epoch 71 - iter 1/2 - loss 0.11336365 - time (sec): 0.08 - samples/sec: 7135.39 - lr: 0.050000 - momentum: 0.000000\n", + "2024-04-02 12:38:59,318 epoch 71 - iter 2/2 - loss 0.09933357 - time (sec): 0.19 - samples/sec: 5869.40 - lr: 0.050000 - momentum: 0.000000\n", + "2024-04-02 12:38:59,320 ----------------------------------------------------------------------------------------------------\n", + "2024-04-02 12:38:59,321 EPOCH 71 done: loss 0.0993 - lr: 0.050000\n", + "2024-04-02 12:38:59,323 - 2 epochs without improvement\n", + "2024-04-02 12:38:59,325 ----------------------------------------------------------------------------------------------------\n", + "2024-04-02 12:38:59,430 epoch 72 - iter 1/2 - loss 0.10677456 - time (sec): 0.10 - samples/sec: 5976.21 - lr: 0.050000 - momentum: 0.000000\n", + "2024-04-02 12:38:59,504 epoch 72 - iter 2/2 - loss 0.10004914 - time (sec): 0.18 - samples/sec: 6152.94 - lr: 0.050000 - momentum: 0.000000\n", + "2024-04-02 12:38:59,506 ----------------------------------------------------------------------------------------------------\n", + "2024-04-02 12:38:59,508 EPOCH 72 done: loss 0.1000 - lr: 0.050000\n", + "2024-04-02 12:38:59,510 - 3 epochs without improvement\n", + "2024-04-02 12:38:59,512 ----------------------------------------------------------------------------------------------------\n", + "2024-04-02 12:38:59,615 epoch 73 - iter 1/2 - loss 0.08836593 - time (sec): 0.10 - samples/sec: 6013.71 - lr: 0.050000 - momentum: 0.000000\n", + "2024-04-02 12:38:59,702 epoch 73 - iter 2/2 - loss 0.08963128 - time (sec): 0.19 - samples/sec: 5798.26 - lr: 0.050000 - momentum: 0.000000\n", + "2024-04-02 12:38:59,704 ----------------------------------------------------------------------------------------------------\n", + "2024-04-02 12:38:59,706 EPOCH 73 done: loss 0.0896 - lr: 0.050000\n", + "2024-04-02 12:38:59,708 - 4 epochs without improvement (above 'patience')-> annealing learning_rate to [0.025]\n", + "2024-04-02 12:38:59,710 ----------------------------------------------------------------------------------------------------\n", + "2024-04-02 12:38:59,800 epoch 74 - iter 1/2 - loss 0.07189532 - time (sec): 0.09 - samples/sec: 6479.90 - lr: 0.025000 - momentum: 0.000000\n", + "2024-04-02 12:38:59,897 epoch 74 - iter 2/2 - loss 0.08220644 - time (sec): 0.18 - samples/sec: 5903.60 - lr: 0.025000 - momentum: 0.000000\n", + "2024-04-02 12:38:59,899 ----------------------------------------------------------------------------------------------------\n", + "2024-04-02 12:38:59,901 EPOCH 74 done: loss 0.0822 - lr: 0.025000\n", + "2024-04-02 12:38:59,903 - 0 epochs without improvement\n", + "2024-04-02 12:38:59,905 ----------------------------------------------------------------------------------------------------\n", + "2024-04-02 12:39:00,007 epoch 75 - iter 1/2 - loss 0.08889680 - time (sec): 0.10 - samples/sec: 6085.51 - lr: 0.025000 - momentum: 0.000000\n", + "2024-04-02 12:39:00,087 epoch 75 - iter 2/2 - loss 0.07784245 - time (sec): 0.18 - samples/sec: 6033.48 - lr: 0.025000 - momentum: 0.000000\n", + "2024-04-02 12:39:00,089 ----------------------------------------------------------------------------------------------------\n", + "2024-04-02 12:39:00,091 EPOCH 75 done: loss 0.0778 - lr: 0.025000\n", + "2024-04-02 12:39:00,093 - 0 epochs without improvement\n", + "2024-04-02 12:39:00,095 ----------------------------------------------------------------------------------------------------\n", + "2024-04-02 12:39:00,178 epoch 76 - iter 1/2 - loss 0.08413783 - time (sec): 0.08 - samples/sec: 6942.49 - lr: 0.025000 - momentum: 0.000000\n", + "2024-04-02 12:39:00,277 epoch 76 - iter 2/2 - loss 0.07547427 - time (sec): 0.18 - samples/sec: 6040.45 - lr: 0.025000 - momentum: 0.000000\n", + "2024-04-02 12:39:00,278 ----------------------------------------------------------------------------------------------------\n", + "2024-04-02 12:39:00,281 EPOCH 76 done: loss 0.0755 - lr: 0.025000\n", + "2024-04-02 12:39:00,283 - 0 epochs without improvement\n", + "2024-04-02 12:39:00,285 ----------------------------------------------------------------------------------------------------\n", + "2024-04-02 12:39:00,369 epoch 77 - iter 1/2 - loss 0.08878959 - time (sec): 0.08 - samples/sec: 6850.04 - lr: 0.025000 - momentum: 0.000000\n", + "2024-04-02 12:39:00,467 epoch 77 - iter 2/2 - loss 0.08625149 - time (sec): 0.18 - samples/sec: 6048.16 - lr: 0.025000 - momentum: 0.000000\n", + "2024-04-02 12:39:00,469 ----------------------------------------------------------------------------------------------------\n", + "2024-04-02 12:39:00,471 EPOCH 77 done: loss 0.0863 - lr: 0.025000\n", + "2024-04-02 12:39:00,474 - 1 epochs without improvement\n", + "2024-04-02 12:39:00,476 ----------------------------------------------------------------------------------------------------\n", + "2024-04-02 12:39:00,587 epoch 78 - iter 1/2 - loss 0.07817116 - time (sec): 0.11 - samples/sec: 5550.93 - lr: 0.025000 - momentum: 0.000000\n", + "2024-04-02 12:39:00,670 epoch 78 - iter 2/2 - loss 0.08518015 - time (sec): 0.19 - samples/sec: 5658.80 - lr: 0.025000 - momentum: 0.000000\n", + "2024-04-02 12:39:00,672 ----------------------------------------------------------------------------------------------------\n", + "2024-04-02 12:39:00,674 EPOCH 78 done: loss 0.0852 - lr: 0.025000\n", + "2024-04-02 12:39:00,676 - 2 epochs without improvement\n", + "2024-04-02 12:39:00,678 ----------------------------------------------------------------------------------------------------\n", + "2024-04-02 12:39:00,777 epoch 79 - iter 1/2 - loss 0.07011843 - time (sec): 0.10 - samples/sec: 5666.35 - lr: 0.025000 - momentum: 0.000000\n", + "2024-04-02 12:39:00,871 epoch 79 - iter 2/2 - loss 0.08749443 - time (sec): 0.19 - samples/sec: 5668.71 - lr: 0.025000 - momentum: 0.000000\n", + "2024-04-02 12:39:00,873 ----------------------------------------------------------------------------------------------------\n", + "2024-04-02 12:39:00,875 EPOCH 79 done: loss 0.0875 - lr: 0.025000\n", + "2024-04-02 12:39:00,878 - 3 epochs without improvement\n", + "2024-04-02 12:39:00,880 ----------------------------------------------------------------------------------------------------\n", + "2024-04-02 12:39:00,982 epoch 80 - iter 1/2 - loss 0.06268984 - time (sec): 0.10 - samples/sec: 5884.95 - lr: 0.025000 - momentum: 0.000000\n", + "2024-04-02 12:39:01,062 epoch 80 - iter 2/2 - loss 0.08230347 - time (sec): 0.18 - samples/sec: 6049.08 - lr: 0.025000 - momentum: 0.000000\n", + "2024-04-02 12:39:01,063 ----------------------------------------------------------------------------------------------------\n", + "2024-04-02 12:39:01,066 EPOCH 80 done: loss 0.0823 - lr: 0.025000\n", + "2024-04-02 12:39:01,068 - 4 epochs without improvement (above 'patience')-> annealing learning_rate to [0.0125]\n", + "2024-04-02 12:39:01,070 ----------------------------------------------------------------------------------------------------\n", + "2024-04-02 12:39:01,174 epoch 81 - iter 1/2 - loss 0.07875583 - time (sec): 0.10 - samples/sec: 5871.13 - lr: 0.012500 - momentum: 0.000000\n", + "2024-04-02 12:39:01,254 epoch 81 - iter 2/2 - loss 0.06995134 - time (sec): 0.18 - samples/sec: 5988.31 - lr: 0.012500 - momentum: 0.000000\n", + "2024-04-02 12:39:01,255 ----------------------------------------------------------------------------------------------------\n", + "2024-04-02 12:39:01,258 EPOCH 81 done: loss 0.0700 - lr: 0.012500\n", + "2024-04-02 12:39:01,260 - 0 epochs without improvement\n", + "2024-04-02 12:39:01,262 ----------------------------------------------------------------------------------------------------\n", + "2024-04-02 12:39:01,345 epoch 82 - iter 1/2 - loss 0.07585760 - time (sec): 0.08 - samples/sec: 6868.62 - lr: 0.012500 - momentum: 0.000000\n", + "2024-04-02 12:39:01,443 epoch 82 - iter 2/2 - loss 0.06974426 - time (sec): 0.18 - samples/sec: 6097.87 - lr: 0.012500 - momentum: 0.000000\n", + "2024-04-02 12:39:01,445 ----------------------------------------------------------------------------------------------------\n", + "2024-04-02 12:39:01,448 EPOCH 82 done: loss 0.0697 - lr: 0.012500\n", + "2024-04-02 12:39:01,450 - 0 epochs without improvement\n", + "2024-04-02 12:39:01,452 ----------------------------------------------------------------------------------------------------\n", + "2024-04-02 12:39:01,554 epoch 83 - iter 1/2 - loss 0.07174847 - time (sec): 0.10 - samples/sec: 5756.80 - lr: 0.012500 - momentum: 0.000000\n", + "2024-04-02 12:39:01,637 epoch 83 - iter 2/2 - loss 0.07034619 - time (sec): 0.18 - samples/sec: 5967.24 - lr: 0.012500 - momentum: 0.000000\n", + "2024-04-02 12:39:01,639 ----------------------------------------------------------------------------------------------------\n", + "2024-04-02 12:39:01,641 EPOCH 83 done: loss 0.0703 - lr: 0.012500\n", + "2024-04-02 12:39:01,644 - 1 epochs without improvement\n", + "2024-04-02 12:39:01,646 ----------------------------------------------------------------------------------------------------\n", + "2024-04-02 12:39:01,747 epoch 84 - iter 1/2 - loss 0.06419448 - time (sec): 0.10 - samples/sec: 5921.64 - lr: 0.012500 - momentum: 0.000000\n", + "2024-04-02 12:39:01,836 epoch 84 - iter 2/2 - loss 0.07776609 - time (sec): 0.19 - samples/sec: 5767.26 - lr: 0.012500 - momentum: 0.000000\n", + "2024-04-02 12:39:01,839 ----------------------------------------------------------------------------------------------------\n", + "2024-04-02 12:39:01,841 EPOCH 84 done: loss 0.0778 - lr: 0.012500\n", + "2024-04-02 12:39:01,843 - 2 epochs without improvement\n", + "2024-04-02 12:39:01,846 ----------------------------------------------------------------------------------------------------\n", + "2024-04-02 12:39:01,952 epoch 85 - iter 1/2 - loss 0.09023521 - time (sec): 0.10 - samples/sec: 5571.57 - lr: 0.012500 - momentum: 0.000000\n", + "2024-04-02 12:39:02,034 epoch 85 - iter 2/2 - loss 0.08321849 - time (sec): 0.19 - samples/sec: 5813.13 - lr: 0.012500 - momentum: 0.000000\n", + "2024-04-02 12:39:02,036 ----------------------------------------------------------------------------------------------------\n", + "2024-04-02 12:39:02,038 EPOCH 85 done: loss 0.0832 - lr: 0.012500\n", + "2024-04-02 12:39:02,040 - 3 epochs without improvement\n", + "2024-04-02 12:39:02,042 ----------------------------------------------------------------------------------------------------\n", + "2024-04-02 12:39:02,122 epoch 86 - iter 1/2 - loss 0.05939736 - time (sec): 0.08 - samples/sec: 7163.40 - lr: 0.012500 - momentum: 0.000000\n", + "2024-04-02 12:39:02,219 epoch 86 - iter 2/2 - loss 0.07049263 - time (sec): 0.17 - samples/sec: 6216.52 - lr: 0.012500 - momentum: 0.000000\n", + "2024-04-02 12:39:02,221 ----------------------------------------------------------------------------------------------------\n", + "2024-04-02 12:39:02,223 EPOCH 86 done: loss 0.0705 - lr: 0.012500\n", + "2024-04-02 12:39:02,225 - 4 epochs without improvement (above 'patience')-> annealing learning_rate to [0.00625]\n", + "2024-04-02 12:39:02,227 ----------------------------------------------------------------------------------------------------\n", + "2024-04-02 12:39:02,313 epoch 87 - iter 1/2 - loss 0.09161505 - time (sec): 0.08 - samples/sec: 6758.79 - lr: 0.006250 - momentum: 0.000000\n", + "2024-04-02 12:39:02,411 epoch 87 - iter 2/2 - loss 0.07844079 - time (sec): 0.18 - samples/sec: 5980.73 - lr: 0.006250 - momentum: 0.000000\n", + "2024-04-02 12:39:02,412 ----------------------------------------------------------------------------------------------------\n", + "2024-04-02 12:39:02,414 EPOCH 87 done: loss 0.0784 - lr: 0.006250\n", + "2024-04-02 12:39:02,416 - 1 epochs without improvement\n", + "2024-04-02 12:39:02,419 ----------------------------------------------------------------------------------------------------\n", + "2024-04-02 12:39:02,503 epoch 88 - iter 1/2 - loss 0.06252489 - time (sec): 0.08 - samples/sec: 6884.54 - lr: 0.006250 - momentum: 0.000000\n", + "2024-04-02 12:39:02,599 epoch 88 - iter 2/2 - loss 0.05931741 - time (sec): 0.18 - samples/sec: 6098.92 - lr: 0.006250 - momentum: 0.000000\n", + "2024-04-02 12:39:02,600 ----------------------------------------------------------------------------------------------------\n", + "2024-04-02 12:39:02,603 EPOCH 88 done: loss 0.0593 - lr: 0.006250\n", + "2024-04-02 12:39:02,605 - 0 epochs without improvement\n", + "2024-04-02 12:39:02,610 ----------------------------------------------------------------------------------------------------\n", + "2024-04-02 12:39:02,717 epoch 89 - iter 1/2 - loss 0.06447771 - time (sec): 0.10 - samples/sec: 5676.90 - lr: 0.006250 - momentum: 0.000000\n", + "2024-04-02 12:39:02,799 epoch 89 - iter 2/2 - loss 0.07432611 - time (sec): 0.18 - samples/sec: 5928.24 - lr: 0.006250 - momentum: 0.000000\n", + "2024-04-02 12:39:02,801 ----------------------------------------------------------------------------------------------------\n", + "2024-04-02 12:39:02,806 EPOCH 89 done: loss 0.0743 - lr: 0.006250\n", + "2024-04-02 12:39:02,809 - 1 epochs without improvement\n", + "2024-04-02 12:39:02,811 ----------------------------------------------------------------------------------------------------\n", + "2024-04-02 12:39:02,917 epoch 90 - iter 1/2 - loss 0.06415097 - time (sec): 0.10 - samples/sec: 5681.39 - lr: 0.006250 - momentum: 0.000000\n", + "2024-04-02 12:39:02,998 epoch 90 - iter 2/2 - loss 0.06999941 - time (sec): 0.18 - samples/sec: 5895.46 - lr: 0.006250 - momentum: 0.000000\n", + "2024-04-02 12:39:03,000 ----------------------------------------------------------------------------------------------------\n", + "2024-04-02 12:39:03,002 EPOCH 90 done: loss 0.0700 - lr: 0.006250\n", + "2024-04-02 12:39:03,004 - 2 epochs without improvement\n", + "2024-04-02 12:39:03,006 ----------------------------------------------------------------------------------------------------\n", + "2024-04-02 12:39:03,107 epoch 91 - iter 1/2 - loss 0.07426291 - time (sec): 0.10 - samples/sec: 5820.25 - lr: 0.006250 - momentum: 0.000000\n", + "2024-04-02 12:39:03,191 epoch 91 - iter 2/2 - loss 0.08922745 - time (sec): 0.18 - samples/sec: 5930.01 - lr: 0.006250 - momentum: 0.000000\n", + "2024-04-02 12:39:03,194 ----------------------------------------------------------------------------------------------------\n", + "2024-04-02 12:39:03,196 EPOCH 91 done: loss 0.0892 - lr: 0.006250\n", + "2024-04-02 12:39:03,198 - 3 epochs without improvement\n", + "2024-04-02 12:39:03,199 ----------------------------------------------------------------------------------------------------\n", + "2024-04-02 12:39:03,294 epoch 92 - iter 1/2 - loss 0.08202867 - time (sec): 0.09 - samples/sec: 6106.90 - lr: 0.006250 - momentum: 0.000000\n", + "2024-04-02 12:39:03,391 epoch 92 - iter 2/2 - loss 0.06541127 - time (sec): 0.19 - samples/sec: 5713.71 - lr: 0.006250 - momentum: 0.000000\n", + "2024-04-02 12:39:03,393 ----------------------------------------------------------------------------------------------------\n", + "2024-04-02 12:39:03,397 EPOCH 92 done: loss 0.0654 - lr: 0.006250\n", + "2024-04-02 12:39:03,399 - 4 epochs without improvement (above 'patience')-> annealing learning_rate to [0.003125]\n", + "2024-04-02 12:39:03,400 ----------------------------------------------------------------------------------------------------\n", + "2024-04-02 12:39:03,484 epoch 93 - iter 1/2 - loss 0.07317067 - time (sec): 0.08 - samples/sec: 6754.21 - lr: 0.003125 - momentum: 0.000000\n", + "2024-04-02 12:39:03,581 epoch 93 - iter 2/2 - loss 0.07066782 - time (sec): 0.18 - samples/sec: 6072.35 - lr: 0.003125 - momentum: 0.000000\n", + "2024-04-02 12:39:03,583 ----------------------------------------------------------------------------------------------------\n", + "2024-04-02 12:39:03,585 EPOCH 93 done: loss 0.0707 - lr: 0.003125\n", + "2024-04-02 12:39:03,587 - 1 epochs without improvement\n", + "2024-04-02 12:39:03,589 ----------------------------------------------------------------------------------------------------\n", + "2024-04-02 12:39:03,673 epoch 94 - iter 1/2 - loss 0.09488721 - time (sec): 0.08 - samples/sec: 6672.02 - lr: 0.003125 - momentum: 0.000000\n", + "2024-04-02 12:39:03,773 epoch 94 - iter 2/2 - loss 0.07745569 - time (sec): 0.18 - samples/sec: 6034.86 - lr: 0.003125 - momentum: 0.000000\n", + "2024-04-02 12:39:03,775 ----------------------------------------------------------------------------------------------------\n", + "2024-04-02 12:39:03,778 EPOCH 94 done: loss 0.0775 - lr: 0.003125\n", + "2024-04-02 12:39:03,780 - 2 epochs without improvement\n", + "2024-04-02 12:39:03,783 ----------------------------------------------------------------------------------------------------\n", + "2024-04-02 12:39:03,902 epoch 95 - iter 1/2 - loss 0.06722196 - time (sec): 0.12 - samples/sec: 5138.63 - lr: 0.003125 - momentum: 0.000000\n", + "2024-04-02 12:39:03,984 epoch 95 - iter 2/2 - loss 0.06787020 - time (sec): 0.20 - samples/sec: 5488.23 - lr: 0.003125 - momentum: 0.000000\n", + "2024-04-02 12:39:03,985 ----------------------------------------------------------------------------------------------------\n", + "2024-04-02 12:39:03,988 EPOCH 95 done: loss 0.0679 - lr: 0.003125\n", + "2024-04-02 12:39:03,990 - 3 epochs without improvement\n", + "2024-04-02 12:39:03,992 ----------------------------------------------------------------------------------------------------\n", + "2024-04-02 12:39:04,077 epoch 96 - iter 1/2 - loss 0.07972961 - time (sec): 0.08 - samples/sec: 6759.32 - lr: 0.003125 - momentum: 0.000000\n", + "2024-04-02 12:39:04,177 epoch 96 - iter 2/2 - loss 0.08482842 - time (sec): 0.18 - samples/sec: 5979.22 - lr: 0.003125 - momentum: 0.000000\n", + "2024-04-02 12:39:04,179 ----------------------------------------------------------------------------------------------------\n", + "2024-04-02 12:39:04,182 EPOCH 96 done: loss 0.0848 - lr: 0.003125\n", + "2024-04-02 12:39:04,184 - 4 epochs without improvement (above 'patience')-> annealing learning_rate to [0.0015625]\n", + "2024-04-02 12:39:04,187 ----------------------------------------------------------------------------------------------------\n", + "2024-04-02 12:39:04,274 epoch 97 - iter 1/2 - loss 0.07143414 - time (sec): 0.08 - samples/sec: 7129.24 - lr: 0.001563 - momentum: 0.000000\n", + "2024-04-02 12:39:04,369 epoch 97 - iter 2/2 - loss 0.06959602 - time (sec): 0.18 - samples/sec: 6103.03 - lr: 0.001563 - momentum: 0.000000\n", + "2024-04-02 12:39:04,371 ----------------------------------------------------------------------------------------------------\n", + "2024-04-02 12:39:04,373 EPOCH 97 done: loss 0.0696 - lr: 0.001563\n", + "2024-04-02 12:39:04,375 - 1 epochs without improvement\n", + "2024-04-02 12:39:04,378 ----------------------------------------------------------------------------------------------------\n", + "2024-04-02 12:39:04,461 epoch 98 - iter 1/2 - loss 0.05324973 - time (sec): 0.08 - samples/sec: 6916.43 - lr: 0.001563 - momentum: 0.000000\n", + "2024-04-02 12:39:04,558 epoch 98 - iter 2/2 - loss 0.06146819 - time (sec): 0.18 - samples/sec: 6102.94 - lr: 0.001563 - momentum: 0.000000\n", + "2024-04-02 12:39:04,560 ----------------------------------------------------------------------------------------------------\n", + "2024-04-02 12:39:04,562 EPOCH 98 done: loss 0.0615 - lr: 0.001563\n", + "2024-04-02 12:39:04,565 - 2 epochs without improvement\n", + "2024-04-02 12:39:04,567 ----------------------------------------------------------------------------------------------------\n", + "2024-04-02 12:39:04,670 epoch 99 - iter 1/2 - loss 0.05931310 - time (sec): 0.10 - samples/sec: 5753.78 - lr: 0.001563 - momentum: 0.000000\n", + "2024-04-02 12:39:04,754 epoch 99 - iter 2/2 - loss 0.07862271 - time (sec): 0.18 - samples/sec: 5893.28 - lr: 0.001563 - momentum: 0.000000\n", + "2024-04-02 12:39:04,755 ----------------------------------------------------------------------------------------------------\n", + "2024-04-02 12:39:04,758 EPOCH 99 done: loss 0.0786 - lr: 0.001563\n", + "2024-04-02 12:39:04,761 - 3 epochs without improvement\n", + "2024-04-02 12:39:04,763 ----------------------------------------------------------------------------------------------------\n", + "2024-04-02 12:39:04,865 epoch 100 - iter 1/2 - loss 0.05068619 - time (sec): 0.10 - samples/sec: 5671.71 - lr: 0.001563 - momentum: 0.000000\n", + "2024-04-02 12:39:04,955 epoch 100 - iter 2/2 - loss 0.06862395 - time (sec): 0.19 - samples/sec: 5727.15 - lr: 0.001563 - momentum: 0.000000\n", + "2024-04-02 12:39:04,957 ----------------------------------------------------------------------------------------------------\n", + "2024-04-02 12:39:04,959 EPOCH 100 done: loss 0.0686 - lr: 0.001563\n", + "2024-04-02 12:39:04,961 - 4 epochs without improvement (above 'patience')-> annealing learning_rate to [0.00078125]\n", + "2024-04-02 12:39:04,963 ----------------------------------------------------------------------------------------------------\n", + "2024-04-02 12:39:05,065 epoch 101 - iter 1/2 - loss 0.04959086 - time (sec): 0.10 - samples/sec: 5946.08 - lr: 0.000781 - momentum: 0.000000\n", + "2024-04-02 12:39:05,149 epoch 101 - iter 2/2 - loss 0.05854479 - time (sec): 0.18 - samples/sec: 5913.49 - lr: 0.000781 - momentum: 0.000000\n", + "2024-04-02 12:39:05,150 ----------------------------------------------------------------------------------------------------\n", + "2024-04-02 12:39:05,153 EPOCH 101 done: loss 0.0585 - lr: 0.000781\n", + "2024-04-02 12:39:05,156 - 0 epochs without improvement\n", + "2024-04-02 12:39:05,158 ----------------------------------------------------------------------------------------------------\n", + "2024-04-02 12:39:05,260 epoch 102 - iter 1/2 - loss 0.07184639 - time (sec): 0.10 - samples/sec: 5999.68 - lr: 0.000781 - momentum: 0.000000\n", + "2024-04-02 12:39:05,343 epoch 102 - iter 2/2 - loss 0.07709004 - time (sec): 0.18 - samples/sec: 5958.24 - lr: 0.000781 - momentum: 0.000000\n", + "2024-04-02 12:39:05,345 ----------------------------------------------------------------------------------------------------\n", + "2024-04-02 12:39:05,347 EPOCH 102 done: loss 0.0771 - lr: 0.000781\n", + "2024-04-02 12:39:05,349 - 1 epochs without improvement\n", + "2024-04-02 12:39:05,351 ----------------------------------------------------------------------------------------------------\n", + "2024-04-02 12:39:05,430 epoch 103 - iter 1/2 - loss 0.06619445 - time (sec): 0.08 - samples/sec: 7203.90 - lr: 0.000781 - momentum: 0.000000\n", + "2024-04-02 12:39:05,527 epoch 103 - iter 2/2 - loss 0.07354270 - time (sec): 0.17 - samples/sec: 6257.03 - lr: 0.000781 - momentum: 0.000000\n", + "2024-04-02 12:39:05,529 ----------------------------------------------------------------------------------------------------\n", + "2024-04-02 12:39:05,534 EPOCH 103 done: loss 0.0735 - lr: 0.000781\n", + "2024-04-02 12:39:05,535 - 2 epochs without improvement\n", + "2024-04-02 12:39:05,537 ----------------------------------------------------------------------------------------------------\n", + "2024-04-02 12:39:05,622 epoch 104 - iter 1/2 - loss 0.06166407 - time (sec): 0.08 - samples/sec: 6742.59 - lr: 0.000781 - momentum: 0.000000\n", + "2024-04-02 12:39:05,720 epoch 104 - iter 2/2 - loss 0.06257367 - time (sec): 0.18 - samples/sec: 6019.34 - lr: 0.000781 - momentum: 0.000000\n", + "2024-04-02 12:39:05,721 ----------------------------------------------------------------------------------------------------\n", + "2024-04-02 12:39:05,724 EPOCH 104 done: loss 0.0626 - lr: 0.000781\n", + "2024-04-02 12:39:05,726 - 3 epochs without improvement\n", + "2024-04-02 12:39:05,728 ----------------------------------------------------------------------------------------------------\n", + "2024-04-02 12:39:05,834 epoch 105 - iter 1/2 - loss 0.07319657 - time (sec): 0.10 - samples/sec: 5565.30 - lr: 0.000781 - momentum: 0.000000\n", + "2024-04-02 12:39:05,915 epoch 105 - iter 2/2 - loss 0.06395451 - time (sec): 0.19 - samples/sec: 5856.23 - lr: 0.000781 - momentum: 0.000000\n", + "2024-04-02 12:39:05,922 ----------------------------------------------------------------------------------------------------\n", + "2024-04-02 12:39:05,924 EPOCH 105 done: loss 0.0640 - lr: 0.000781\n", + "2024-04-02 12:39:05,926 - 4 epochs without improvement (above 'patience')-> annealing learning_rate to [0.000390625]\n", + "2024-04-02 12:39:05,929 ----------------------------------------------------------------------------------------------------\n", + "2024-04-02 12:39:06,018 epoch 106 - iter 1/2 - loss 0.05404112 - time (sec): 0.09 - samples/sec: 6505.52 - lr: 0.000391 - momentum: 0.000000\n", + "2024-04-02 12:39:06,114 epoch 106 - iter 2/2 - loss 0.07654067 - time (sec): 0.18 - samples/sec: 5959.38 - lr: 0.000391 - momentum: 0.000000\n", + "2024-04-02 12:39:06,116 ----------------------------------------------------------------------------------------------------\n", + "2024-04-02 12:39:06,118 EPOCH 106 done: loss 0.0765 - lr: 0.000391\n", + "2024-04-02 12:39:06,120 - 1 epochs without improvement\n", + "2024-04-02 12:39:06,122 ----------------------------------------------------------------------------------------------------\n", + "2024-04-02 12:39:06,228 epoch 107 - iter 1/2 - loss 0.06587247 - time (sec): 0.10 - samples/sec: 5804.27 - lr: 0.000391 - momentum: 0.000000\n", + "2024-04-02 12:39:06,326 epoch 107 - iter 2/2 - loss 0.07110983 - time (sec): 0.20 - samples/sec: 5400.98 - lr: 0.000391 - momentum: 0.000000\n", + "2024-04-02 12:39:06,327 ----------------------------------------------------------------------------------------------------\n", + "2024-04-02 12:39:06,329 EPOCH 107 done: loss 0.0711 - lr: 0.000391\n", + "2024-04-02 12:39:06,331 - 2 epochs without improvement\n", + "2024-04-02 12:39:06,333 ----------------------------------------------------------------------------------------------------\n", + "2024-04-02 12:39:06,432 epoch 108 - iter 1/2 - loss 0.07758797 - time (sec): 0.10 - samples/sec: 6020.48 - lr: 0.000391 - momentum: 0.000000\n", + "2024-04-02 12:39:06,532 epoch 108 - iter 2/2 - loss 0.07718707 - time (sec): 0.20 - samples/sec: 5554.28 - lr: 0.000391 - momentum: 0.000000\n", + "2024-04-02 12:39:06,535 ----------------------------------------------------------------------------------------------------\n", + "2024-04-02 12:39:06,536 EPOCH 108 done: loss 0.0772 - lr: 0.000391\n", + "2024-04-02 12:39:06,538 - 3 epochs without improvement\n", + "2024-04-02 12:39:06,540 ----------------------------------------------------------------------------------------------------\n", + "2024-04-02 12:39:06,664 epoch 109 - iter 1/2 - loss 0.05915363 - time (sec): 0.12 - samples/sec: 4673.94 - lr: 0.000391 - momentum: 0.000000\n", + "2024-04-02 12:39:06,794 epoch 109 - iter 2/2 - loss 0.05913773 - time (sec): 0.25 - samples/sec: 4323.62 - lr: 0.000391 - momentum: 0.000000\n", + "2024-04-02 12:39:06,796 ----------------------------------------------------------------------------------------------------\n", + "2024-04-02 12:39:06,798 EPOCH 109 done: loss 0.0591 - lr: 0.000391\n", + "2024-04-02 12:39:06,800 - 4 epochs without improvement (above 'patience')-> annealing learning_rate to [0.0001953125]\n", + "2024-04-02 12:39:06,801 ----------------------------------------------------------------------------------------------------\n", + "2024-04-02 12:39:06,938 epoch 110 - iter 1/2 - loss 0.06734865 - time (sec): 0.13 - samples/sec: 4363.30 - lr: 0.000195 - momentum: 0.000000\n", + "2024-04-02 12:39:07,048 epoch 110 - iter 2/2 - loss 0.06403043 - time (sec): 0.24 - samples/sec: 4442.16 - lr: 0.000195 - momentum: 0.000000\n", + "2024-04-02 12:39:07,051 ----------------------------------------------------------------------------------------------------\n", + "2024-04-02 12:39:07,053 EPOCH 110 done: loss 0.0640 - lr: 0.000195\n", + "2024-04-02 12:39:07,055 - 1 epochs without improvement\n", + "2024-04-02 12:39:07,057 ----------------------------------------------------------------------------------------------------\n", + "2024-04-02 12:39:07,165 epoch 111 - iter 1/2 - loss 0.08403663 - time (sec): 0.11 - samples/sec: 5375.66 - lr: 0.000195 - momentum: 0.000000\n", + "2024-04-02 12:39:07,295 epoch 111 - iter 2/2 - loss 0.08189290 - time (sec): 0.24 - samples/sec: 4599.19 - lr: 0.000195 - momentum: 0.000000\n", + "2024-04-02 12:39:07,302 ----------------------------------------------------------------------------------------------------\n", + "2024-04-02 12:39:07,304 EPOCH 111 done: loss 0.0819 - lr: 0.000195\n", + "2024-04-02 12:39:07,306 - 2 epochs without improvement\n", + "2024-04-02 12:39:07,310 ----------------------------------------------------------------------------------------------------\n", + "2024-04-02 12:39:07,447 epoch 112 - iter 1/2 - loss 0.06873646 - time (sec): 0.13 - samples/sec: 4332.50 - lr: 0.000195 - momentum: 0.000000\n", + "2024-04-02 12:39:07,550 epoch 112 - iter 2/2 - loss 0.07077024 - time (sec): 0.24 - samples/sec: 4566.74 - lr: 0.000195 - momentum: 0.000000\n", + "2024-04-02 12:39:07,553 ----------------------------------------------------------------------------------------------------\n", + "2024-04-02 12:39:07,554 EPOCH 112 done: loss 0.0708 - lr: 0.000195\n", + "2024-04-02 12:39:07,556 - 3 epochs without improvement\n", + "2024-04-02 12:39:07,558 ----------------------------------------------------------------------------------------------------\n", + "2024-04-02 12:39:07,691 epoch 113 - iter 1/2 - loss 0.06367003 - time (sec): 0.13 - samples/sec: 4449.81 - lr: 0.000195 - momentum: 0.000000\n", + "2024-04-02 12:39:07,802 epoch 113 - iter 2/2 - loss 0.07219690 - time (sec): 0.24 - samples/sec: 4490.01 - lr: 0.000195 - momentum: 0.000000\n", + "2024-04-02 12:39:07,806 ----------------------------------------------------------------------------------------------------\n", + "2024-04-02 12:39:07,809 EPOCH 113 done: loss 0.0722 - lr: 0.000195\n", + "2024-04-02 12:39:07,811 - 4 epochs without improvement (above 'patience')-> annealing learning_rate to [9.765625e-05]\n", + "2024-04-02 12:39:07,813 ----------------------------------------------------------------------------------------------------\n", + "2024-04-02 12:39:07,815 learning rate too small - quitting training!\n", + "2024-04-02 12:39:07,817 ----------------------------------------------------------------------------------------------------\n", + "2024-04-02 12:39:07,819 Saving model ...\n", + "2024-04-02 12:39:09,605 Done.\n", + "2024-04-02 12:39:09,607 ----------------------------------------------------------------------------------------------------\n", + "2024-04-02 12:39:09,611 Testing using last state of model ...\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "100%|██████████| 1/1 [00:00<00:00, 3.71it/s]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "2024-04-02 12:39:09,914 \n", + "Results:\n", + "- F-score (micro) 0.9091\n", + "- F-score (macro) 0.9\n", + "- Accuracy 0.8333\n", + "\n", + "By class:\n", + " precision recall f1-score support\n", + "\n", + " GCNUM 1.0000 1.0000 1.0000 3\n", + " TRACK-ID 1.0000 0.6667 0.8000 3\n", + "\n", + " micro avg 1.0000 0.8333 0.9091 6\n", + " macro avg 1.0000 0.8333 0.9000 6\n", + "weighted avg 1.0000 0.8333 0.9000 6\n", + "\n", + "2024-04-02 12:39:09,916 ----------------------------------------------------------------------------------------------------\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\n" + ] + }, + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "{'test_score': 0.9090909090909091}" + ] + }, + "metadata": {}, + "execution_count": 3 + } + ] + }, + { + "cell_type": "code", + "source": [ + "import torch\n", + "torch.cuda.empty_cache()" + ], + "metadata": { + "id": "Wp195IvjvS-d" + }, + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "code", + "source": [ + "from flair.data import Sentence\n", + "from flair.models import SequenceTagger\n", + "# load the trained model\n", + "model = SequenceTagger.load('/content/resources/taggers/ner-english/final-model.pt')\n", + "# create example sentence\n", + "sentence = Sentence('DOOMDAY WHITESTOWN INADS dipak manavr dipak manvar GC14024 INDIA FL55 BG2303140267275 GROUND OnTrac')\n", + "# predict the tags\n", + "model.predict(sentence)\n", + "print(sentence.to_tagged_string())" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "tkBblzFUrFdT", + "outputId": "93fa8370-cbae-48dc-bdaf-fd57f3dc5129" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "2024-04-02 06:50:57,549 SequenceTagger predicts: Dictionary with 11 tags: O, S-GCNUM, B-GCNUM, E-GCNUM, I-GCNUM, S-TRACK-ID, B-TRACK-ID, E-TRACK-ID, I-TRACK-ID, , \n", + "Sentence[13]: \"DOOMDAY WHITESTOWN INADS dipak manavr dipak manvar GC14024 INDIA FL55 BG2303140267275 GROUND OnTrac\" → [\"GC14024\"/GCNUM, \"BG2303140267275\"/TRACK-ID]\n" + ] + } + ] + }, + { + "cell_type": "code", + "source": [ + "import torch\n", + "torch.save(model.state_dict(), '/content/drive/MyDrive/model.bin')" + ], + "metadata": { + "id": "Xfs7BLwJtpNP" + }, + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "code", + "source": [ + "corpus.train[0].to_tagged_string('ner')" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 54 + }, + "id": "zpy_Yennoh7n", + "outputId": "ea4dd288-396c-4b50-d13f-d27a736db970" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "'Sentence[10]: \"ROADGET LINTHA SMITH GC13124 MIAMI FL33155 BG2303140267275 GROUND OnTrac LINTA\" → [\"ROADGET\"/ORG, \"LINTHA SMITH\"/NAME, \"GC13124\"/GCNUMBER, \"MIAMI FL33155\"/LOCATION, \"BG2303140267275\"/BGNUMBER, \"LINTA\"/NAME]'" + ], + "application/vnd.google.colaboratory.intrinsic+json": { + "type": "string" + } + }, + "metadata": {}, + "execution_count": 43 + } + ] + }, + { + "cell_type": "code", + "source": [ + "from google.colab import drive\n", + "drive.mount('/content/drive')" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "-9kVdxcjKe-P", + "outputId": "4ace1e3b-0dc7-42fe-82c1-be8786709322" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Mounted at /content/drive\n" + ] + } + ] + }, + { + "cell_type": "code", + "source": [ + "!pip freeze" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "GhocZeE5sjl2", + "outputId": "326e9624-12fb-45bc-81ed-1b8028b0e6fb" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "absl-py==1.4.0\n", + "accelerate==0.28.0\n", + "aiohttp==3.9.3\n", + "aiosignal==1.3.1\n", + "alabaster==0.7.16\n", + "albumentations==1.3.1\n", + "altair==4.2.2\n", + "annotated-types==0.6.0\n", + "anyio==3.7.1\n", + "appdirs==1.4.4\n", + "argon2-cffi==23.1.0\n", + "argon2-cffi-bindings==21.2.0\n", + "array-record==0.5.0\n", + "arviz==0.15.1\n", + "astropy==5.3.4\n", + "astunparse==1.6.3\n", + "async-timeout==4.0.3\n", + "atpublic==4.0\n", + "attrs==23.2.0\n", + "audioread==3.0.1\n", + "autograd==1.6.2\n", + "Babel==2.14.0\n", + "backcall==0.2.0\n", + "beautifulsoup4==4.12.3\n", + "bidict==0.23.1\n", + "bigframes==1.0.0\n", + "bleach==6.1.0\n", + "blinker==1.4\n", + "blis==0.7.11\n", + "blosc2==2.0.0\n", + "bokeh==3.3.4\n", + "boto3==1.34.72\n", + "botocore==1.34.72\n", + "bpemb==0.3.5\n", + "bqplot==0.12.43\n", + "branca==0.7.1\n", + "build==1.1.1\n", + "CacheControl==0.14.0\n", + "cachetools==5.3.3\n", + "catalogue==2.0.10\n", + "certifi==2024.2.2\n", + "cffi==1.16.0\n", + "chardet==5.2.0\n", + "charset-normalizer==3.3.2\n", + "chex==0.1.86\n", + "click==8.1.7\n", + "click-plugins==1.1.1\n", + "cligj==0.7.2\n", + "cloudpathlib==0.16.0\n", + "cloudpickle==2.2.1\n", + "cmake==3.27.9\n", + "cmdstanpy==1.2.1\n", + "colorcet==3.1.0\n", + "colorlover==0.3.0\n", + "colour==0.1.5\n", + "community==1.0.0b1\n", + "confection==0.1.4\n", + "conllu==4.5.3\n", + "cons==0.4.6\n", + "contextlib2==21.6.0\n", + "contourpy==1.2.0\n", + "cryptography==42.0.5\n", + "cufflinks==0.17.3\n", + "cupy-cuda12x==12.2.0\n", + "cvxopt==1.3.2\n", + "cvxpy==1.3.3\n", + "cycler==0.12.1\n", + "cymem==2.0.8\n", + "Cython==3.0.9\n", + "dask==2023.8.1\n", + "datascience==0.17.6\n", + "db-dtypes==1.2.0\n", + "dbus-python==1.2.18\n", + "debugpy==1.6.6\n", + "decorator==4.4.2\n", + "defusedxml==0.7.1\n", + "Deprecated==1.2.14\n", + "distributed==2023.8.1\n", + "distro==1.7.0\n", + "dlib==19.24.2\n", + "dm-tree==0.1.8\n", + "docutils==0.18.1\n", + "dopamine-rl==4.0.6\n", + "duckdb==0.9.2\n", + "earthengine-api==0.1.395\n", + "easydict==1.13\n", + "ecos==2.0.13\n", + "editdistance==0.6.2\n", + "eerepr==0.0.4\n", + "en-core-web-sm @ https://github.com/explosion/spacy-models/releases/download/en_core_web_sm-3.7.1/en_core_web_sm-3.7.1-py3-none-any.whl#sha256=86cc141f63942d4b2c5fcee06630fd6f904788d2f0ab005cce45aadb8fb73889\n", + "entrypoints==0.4\n", + "et-xmlfile==1.1.0\n", + "etils==1.7.0\n", + "etuples==0.3.9\n", + "exceptiongroup==1.2.0\n", + "fastai==2.7.14\n", + "fastcore==1.5.29\n", + "fastdownload==0.0.7\n", + "fastjsonschema==2.19.1\n", + "fastprogress==1.0.3\n", + "fastrlock==0.8.2\n", + "filelock==3.13.3\n", + "fiona==1.9.6\n", + "firebase-admin==5.3.0\n", + "flair==0.13.1\n", + "Flask==2.2.5\n", + "flatbuffers==24.3.7\n", + "flax==0.8.2\n", + "folium==0.14.0\n", + "fonttools==4.50.0\n", + "frozendict==2.4.0\n", + "frozenlist==1.4.1\n", + "fsspec==2023.6.0\n", + "ftfy==6.2.0\n", + "future==0.18.3\n", + "gast==0.5.4\n", + "gcsfs==2023.6.0\n", + "GDAL==3.6.4\n", + "gdown==4.7.3\n", + "geemap==0.32.0\n", + "gensim==4.3.2\n", + "geocoder==1.38.1\n", + "geographiclib==2.0\n", + "geopandas==0.13.2\n", + "geopy==2.3.0\n", + "gin-config==0.5.0\n", + "glob2==0.7\n", + "google==2.0.3\n", + "google-ai-generativelanguage==0.4.0\n", + "google-api-core==2.11.1\n", + "google-api-python-client==2.84.0\n", + "google-auth==2.27.0\n", + "google-auth-httplib2==0.1.1\n", + "google-auth-oauthlib==1.2.0\n", + "google-cloud-aiplatform==1.44.0\n", + "google-cloud-bigquery==3.12.0\n", + "google-cloud-bigquery-connection==1.12.1\n", + "google-cloud-bigquery-storage==2.24.0\n", + "google-cloud-core==2.3.3\n", + "google-cloud-datastore==2.15.2\n", + "google-cloud-firestore==2.11.1\n", + "google-cloud-functions==1.13.3\n", + "google-cloud-iam==2.14.3\n", + "google-cloud-language==2.13.3\n", + "google-cloud-resource-manager==1.12.3\n", + "google-cloud-storage==2.8.0\n", + "google-cloud-translate==3.11.3\n", + "google-colab @ file:///colabtools/dist/google-colab-1.0.0.tar.gz#sha256=0b702febc660d4a9a3e78e6568740624daa9ccacc4b00e81f209868b7ef4c290\n", + "google-crc32c==1.5.0\n", + "google-generativeai==0.3.2\n", + "google-pasta==0.2.0\n", + "google-resumable-media==2.7.0\n", + "googleapis-common-protos==1.63.0\n", + "googledrivedownloader==0.4\n", + "graphviz==0.20.3\n", + "greenlet==3.0.3\n", + "grpc-google-iam-v1==0.13.0\n", + "grpcio==1.62.1\n", + "grpcio-status==1.48.2\n", + "gspread==3.4.2\n", + "gspread-dataframe==3.3.1\n", + "gym==0.25.2\n", + "gym-notices==0.0.8\n", + "h5netcdf==1.3.0\n", + "h5py==3.9.0\n", + "holidays==0.45\n", + "holoviews==1.17.1\n", + "html5lib==1.1\n", + "httpimport==1.3.1\n", + "httplib2==0.22.0\n", + "huggingface-hub==0.20.3\n", + "humanize==4.7.0\n", + "hyperopt==0.2.7\n", + "ibis-framework==8.0.0\n", + "idna==3.6\n", + "imageio==2.31.6\n", + "imageio-ffmpeg==0.4.9\n", + "imagesize==1.4.1\n", + "imbalanced-learn==0.10.1\n", + "imgaug==0.4.0\n", + "importlib_metadata==7.1.0\n", + "importlib_resources==6.4.0\n", + "imutils==0.5.4\n", + "inflect==7.0.0\n", + "iniconfig==2.0.0\n", + "intel-openmp==2023.2.4\n", + "ipyevents==2.0.2\n", + "ipyfilechooser==0.6.0\n", + "ipykernel==5.5.6\n", + "ipyleaflet==0.18.2\n", + "ipython==7.34.0\n", + "ipython-genutils==0.2.0\n", + "ipython-sql==0.5.0\n", + "ipytree==0.2.2\n", + "ipywidgets==7.7.1\n", + "itsdangerous==2.1.2\n", + "Janome==0.5.0\n", + "jax==0.4.23\n", + "jaxlib @ https://storage.googleapis.com/jax-releases/cuda12/jaxlib-0.4.23+cuda12.cudnn89-cp310-cp310-manylinux2014_x86_64.whl#sha256=8e42000672599e7ec0ea7f551acfcc95dcdd0e22b05a1d1f12f97b56a9fce4a8\n", + "jeepney==0.7.1\n", + "jieba==0.42.1\n", + "Jinja2==3.1.3\n", + "jmespath==1.0.1\n", + "joblib==1.3.2\n", + "jsonpickle==3.0.3\n", + "jsonschema==4.19.2\n", + "jsonschema-specifications==2023.12.1\n", + "jupyter-client==6.1.12\n", + "jupyter-console==6.1.0\n", + "jupyter-server==1.24.0\n", + "jupyter_core==5.7.2\n", + "jupyterlab_pygments==0.3.0\n", + "jupyterlab_widgets==3.0.10\n", + "kaggle==1.5.16\n", + "kagglehub==0.2.1\n", + "keras==2.15.0\n", + "keyring==23.5.0\n", + "kiwisolver==1.4.5\n", + "langcodes==3.3.0\n", + "langdetect==1.0.9\n", + "launchpadlib==1.10.16\n", + "lazr.restfulclient==0.14.4\n", + "lazr.uri==1.0.6\n", + "lazy_loader==0.3\n", + "libclang==18.1.1\n", + "librosa==0.10.1\n", + "lightgbm==4.1.0\n", + "linkify-it-py==2.0.3\n", + "llvmlite==0.41.1\n", + "locket==1.0.0\n", + "logical-unification==0.4.6\n", + "lxml==4.9.4\n", + "malloy==2023.1067\n", + "Markdown==3.6\n", + "markdown-it-py==3.0.0\n", + "MarkupSafe==2.1.5\n", + "matplotlib==3.7.1\n", + "matplotlib-inline==0.1.6\n", + "matplotlib-venn==0.11.10\n", + "mdit-py-plugins==0.4.0\n", + "mdurl==0.1.2\n", + "miniKanren==1.0.3\n", + "missingno==0.5.2\n", + "mistune==0.8.4\n", + "mizani==0.9.3\n", + "mkl==2023.2.0\n", + "ml-dtypes==0.2.0\n", + "mlxtend==0.22.0\n", + "more-itertools==10.1.0\n", + "moviepy==1.0.3\n", + "mpld3==0.5.10\n", + "mpmath==1.3.0\n", + "msgpack==1.0.8\n", + "multidict==6.0.5\n", + "multipledispatch==1.0.0\n", + "multitasking==0.0.11\n", + "murmurhash==1.0.10\n", + "music21==9.1.0\n", + "natsort==8.4.0\n", + "nbclassic==1.0.0\n", + "nbclient==0.10.0\n", + "nbconvert==6.5.4\n", + "nbformat==5.10.3\n", + "nest-asyncio==1.6.0\n", + "networkx==3.2.1\n", + "nibabel==4.0.2\n", + "nltk==3.8.1\n", + "notebook==6.5.5\n", + "notebook_shim==0.2.4\n", + "numba==0.58.1\n", + "numexpr==2.9.0\n", + "numpy==1.25.2\n", + "nvidia-cublas-cu12==12.1.3.1\n", + "nvidia-cuda-cupti-cu12==12.1.105\n", + "nvidia-cuda-nvrtc-cu12==12.1.105\n", + "nvidia-cuda-runtime-cu12==12.1.105\n", + "nvidia-cudnn-cu12==8.9.2.26\n", + "nvidia-cufft-cu12==11.0.2.54\n", + "nvidia-curand-cu12==10.3.2.106\n", + "nvidia-cusolver-cu12==11.4.5.107\n", + "nvidia-cusparse-cu12==12.1.0.106\n", + "nvidia-nccl-cu12==2.19.3\n", + "nvidia-nvjitlink-cu12==12.4.99\n", + "nvidia-nvtx-cu12==12.1.105\n", + "oauth2client==4.1.3\n", + "oauthlib==3.2.2\n", + "opencv-contrib-python==4.8.0.76\n", + "opencv-python==4.8.0.76\n", + "opencv-python-headless==4.9.0.80\n", + "openpyxl==3.1.2\n", + "opt-einsum==3.3.0\n", + "optax==0.2.1\n", + "orbax-checkpoint==0.4.4\n", + "osqp==0.6.2.post8\n", + "packaging==24.0\n", + "pandas==1.5.3\n", + "pandas-datareader==0.10.0\n", + "pandas-gbq==0.19.2\n", + "pandas-stubs==1.5.3.230304\n", + "pandocfilters==1.5.1\n", + "panel==1.3.8\n", + "param==2.1.0\n", + "parso==0.8.3\n", + "parsy==2.1\n", + "partd==1.4.1\n", + "pathlib==1.0.1\n", + "patsy==0.5.6\n", + "peewee==3.17.1\n", + "pexpect==4.9.0\n", + "pickleshare==0.7.5\n", + "Pillow==9.4.0\n", + "pip-tools==6.13.0\n", + "platformdirs==4.2.0\n", + "plotly==5.15.0\n", + "plotnine==0.12.4\n", + "pluggy==1.4.0\n", + "polars==0.20.2\n", + "pooch==1.8.1\n", + "portpicker==1.5.2\n", + "pptree==3.1\n", + "prefetch-generator==1.0.3\n", + "preshed==3.0.9\n", + "prettytable==3.10.0\n", + "proglog==0.1.10\n", + "progressbar2==4.2.0\n", + "prometheus_client==0.20.0\n", + "promise==2.3\n", + "prompt-toolkit==3.0.43\n", + "prophet==1.1.5\n", + "proto-plus==1.23.0\n", + "protobuf==3.20.3\n", + "psutil==5.9.5\n", + "psycopg2==2.9.9\n", + "ptyprocess==0.7.0\n", + "py-cpuinfo==9.0.0\n", + "py4j==0.10.9.7\n", + "pyarrow==14.0.2\n", + "pyarrow-hotfix==0.6\n", + "pyasn1==0.5.1\n", + "pyasn1-modules==0.3.0\n", + "pycocotools==2.0.7\n", + "pycparser==2.21\n", + "pydantic==2.6.4\n", + "pydantic_core==2.16.3\n", + "pydata-google-auth==1.8.2\n", + "pydot==1.4.2\n", + "pydot-ng==2.0.0\n", + "pydotplus==2.0.2\n", + "PyDrive==1.3.1\n", + "PyDrive2==1.6.3\n", + "pyerfa==2.0.1.1\n", + "pygame==2.5.2\n", + "Pygments==2.16.1\n", + "PyGObject==3.42.1\n", + "PyJWT==2.3.0\n", + "pymc==5.10.4\n", + "pymystem3==0.2.0\n", + "PyOpenGL==3.1.7\n", + "pyOpenSSL==24.1.0\n", + "pyparsing==3.1.2\n", + "pyperclip==1.8.2\n", + "pyproj==3.6.1\n", + "pyproject_hooks==1.0.0\n", + "pyshp==2.3.1\n", + "PySocks==1.7.1\n", + "pytensor==2.18.6\n", + "pytest==7.4.4\n", + "python-apt @ file:///backend-container/containers/python_apt-0.0.0-cp310-cp310-linux_x86_64.whl#sha256=b209c7165d6061963abe611492f8c91c3bcef4b7a6600f966bab58900c63fefa\n", + "python-box==7.1.1\n", + "python-dateutil==2.8.2\n", + "python-louvain==0.16\n", + "python-slugify==8.0.4\n", + "python-utils==3.8.2\n", + "pytorch_revgrad==0.2.0\n", + "pytz==2023.4\n", + "pyviz_comms==3.0.2\n", + "PyWavelets==1.5.0\n", + "PyYAML==6.0.1\n", + "pyzmq==23.2.1\n", + "qdldl==0.1.7.post0\n", + "qudida==0.0.4\n", + "ratelim==0.1.6\n", + "referencing==0.34.0\n", + "regex==2023.12.25\n", + "requests==2.31.0\n", + "requests-oauthlib==1.4.0\n", + "requirements-parser==0.5.0\n", + "rich==13.7.1\n", + "rpds-py==0.18.0\n", + "rpy2==3.4.2\n", + "rsa==4.9\n", + "s3transfer==0.10.1\n", + "safetensors==0.4.2\n", + "scikit-image==0.19.3\n", + "scikit-learn==1.2.2\n", + "scipy==1.11.4\n", + "scooby==0.9.2\n", + "scs==3.2.4.post1\n", + "seaborn==0.13.1\n", + "SecretStorage==3.3.1\n", + "segtok==1.5.11\n", + "semver==3.0.2\n", + "Send2Trash==1.8.2\n", + "sentencepiece==0.1.99\n", + "shapely==2.0.3\n", + "six==1.16.0\n", + "sklearn-pandas==2.2.0\n", + "smart-open==6.4.0\n", + "sniffio==1.3.1\n", + "snowballstemmer==2.2.0\n", + "sortedcontainers==2.4.0\n", + "soundfile==0.12.1\n", + "soupsieve==2.5\n", + "soxr==0.3.7\n", + "spacy==3.7.4\n", + "spacy-legacy==3.0.12\n", + "spacy-loggers==1.0.5\n", + "Sphinx==5.0.2\n", + "sphinxcontrib-applehelp==1.0.8\n", + "sphinxcontrib-devhelp==1.0.6\n", + "sphinxcontrib-htmlhelp==2.0.5\n", + "sphinxcontrib-jsmath==1.0.1\n", + "sphinxcontrib-qthelp==1.0.7\n", + "sphinxcontrib-serializinghtml==1.1.10\n", + "SQLAlchemy==2.0.29\n", + "sqlglot==20.11.0\n", + "sqlitedict==2.1.0\n", + "sqlparse==0.4.4\n", + "srsly==2.4.8\n", + "stanio==0.3.0\n", + "statsmodels==0.14.1\n", + "sympy==1.12\n", + "tables==3.8.0\n", + "tabulate==0.9.0\n", + "tbb==2021.11.0\n", + "tblib==3.0.0\n", + "tenacity==8.2.3\n", + "tensorboard==2.15.2\n", + "tensorboard-data-server==0.7.2\n", + "tensorflow==2.15.0\n", + "tensorflow-datasets==4.9.4\n", + "tensorflow-estimator==2.15.0\n", + "tensorflow-gcs-config==2.15.0\n", + "tensorflow-hub==0.16.1\n", + "tensorflow-io-gcs-filesystem==0.36.0\n", + "tensorflow-metadata==1.14.0\n", + "tensorflow-probability==0.23.0\n", + "tensorstore==0.1.45\n", + "termcolor==2.4.0\n", + "terminado==0.18.1\n", + "text-unidecode==1.3\n", + "textblob==0.17.1\n", + "tf-slim==1.1.0\n", + "tf_keras==2.15.1\n", + "thinc==8.2.3\n", + "threadpoolctl==3.4.0\n", + "tifffile==2024.2.12\n", + "tinycss2==1.2.1\n", + "tokenizers==0.15.2\n", + "toml==0.10.2\n", + "tomli==2.0.1\n", + "toolz==0.12.1\n", + "torch @ https://download.pytorch.org/whl/cu121/torch-2.2.1%2Bcu121-cp310-cp310-linux_x86_64.whl#sha256=1adf430f01ff649c848ac021785e18007b0714fdde68e4e65bd0c640bf3fb8e1\n", + "torchaudio @ https://download.pytorch.org/whl/cu121/torchaudio-2.2.1%2Bcu121-cp310-cp310-linux_x86_64.whl#sha256=23f6236429e2bf676b820e8e7221a1d58aaf908bff2ba2665aa852df71a97961\n", + "torchdata==0.7.1\n", + "torchsummary==1.5.1\n", + "torchtext==0.17.1\n", + "torchvision @ https://download.pytorch.org/whl/cu121/torchvision-0.17.1%2Bcu121-cp310-cp310-linux_x86_64.whl#sha256=27af47915f6e762c1d44e58e8088d22ac97445668f9f793524032b2baf4f34bd\n", + "tornado==6.3.3\n", + "tqdm==4.66.2\n", + "traitlets==5.7.1\n", + "traittypes==0.2.1\n", + "transformer-smaller-training-vocab==0.3.3\n", + "transformers==4.38.2\n", + "triton==2.2.0\n", + "tweepy==4.14.0\n", + "typer==0.9.4\n", + "types-pytz==2024.1.0.20240203\n", + "types-setuptools==69.2.0.20240317\n", + "typing_extensions==4.10.0\n", + "tzlocal==5.2\n", + "uc-micro-py==1.0.3\n", + "uritemplate==4.1.1\n", + "urllib3==1.26.18\n", + "vega-datasets==0.9.0\n", + "wadllib==1.3.6\n", + "wasabi==1.1.2\n", + "wcwidth==0.2.13\n", + "weasel==0.3.4\n", + "webcolors==1.13\n", + "webencodings==0.5.1\n", + "websocket-client==1.7.0\n", + "Werkzeug==3.0.1\n", + "widgetsnbextension==3.6.6\n", + "Wikipedia-API==0.6.0\n", + "wordcloud==1.9.3\n", + "wrapt==1.14.1\n", + "xarray==2023.7.0\n", + "xarray-einstats==0.7.0\n", + "xgboost==2.0.3\n", + "xlrd==2.0.1\n", + "xyzservices==2023.10.1\n", + "yarl==1.9.4\n", + "yellowbrick==1.5\n", + "yfinance==0.2.37\n", + "zict==3.0.0\n", + "zipp==3.18.1\n" + ] + } + ] + }, + { + "cell_type": "code", + "source": [ + "!pip freeze" + ], + "metadata": { + "id": "aHb6ICTuvUQW", + "colab": { + "base_uri": "https://localhost:8080/" + }, + "outputId": "d843f688-9034-416c-fbd1-98a8545740df" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "absl-py==1.4.0\n", + "accelerate==0.28.0\n", + "aiohttp==3.9.3\n", + "aiosignal==1.3.1\n", + "alabaster==0.7.16\n", + "albumentations==1.3.1\n", + "altair==4.2.2\n", + "annotated-types==0.6.0\n", + "anyio==3.7.1\n", + "appdirs==1.4.4\n", + "argon2-cffi==23.1.0\n", + "argon2-cffi-bindings==21.2.0\n", + "array-record==0.5.0\n", + "arviz==0.15.1\n", + "astropy==5.3.4\n", + "astunparse==1.6.3\n", + "async-timeout==4.0.3\n", + "atpublic==4.0\n", + "attrs==23.2.0\n", + "audioread==3.0.1\n", + "autograd==1.6.2\n", + "Babel==2.14.0\n", + "backcall==0.2.0\n", + "beautifulsoup4==4.12.3\n", + "bidict==0.23.1\n", + "bigframes==1.0.0\n", + "bleach==6.1.0\n", + "blinker==1.4\n", + "blis==0.7.11\n", + "blosc2==2.0.0\n", + "bokeh==3.3.4\n", + "boto3==1.34.75\n", + "botocore==1.34.75\n", + "bpemb==0.3.5\n", + "bqplot==0.12.43\n", + "branca==0.7.1\n", + "build==1.2.1\n", + "CacheControl==0.14.0\n", + "cachetools==5.3.3\n", + "catalogue==2.0.10\n", + "certifi==2024.2.2\n", + "cffi==1.16.0\n", + "chardet==5.2.0\n", + "charset-normalizer==3.3.2\n", + "chex==0.1.86\n", + "click==8.1.7\n", + "click-plugins==1.1.1\n", + "cligj==0.7.2\n", + "cloudpathlib==0.16.0\n", + "cloudpickle==2.2.1\n", + "cmake==3.27.9\n", + "cmdstanpy==1.2.2\n", + "colorcet==3.1.0\n", + "colorlover==0.3.0\n", + "colour==0.1.5\n", + "community==1.0.0b1\n", + "confection==0.1.4\n", + "conllu==4.5.3\n", + "cons==0.4.6\n", + "contextlib2==21.6.0\n", + "contourpy==1.2.0\n", + "cryptography==42.0.5\n", + "cufflinks==0.17.3\n", + "cupy-cuda12x==12.2.0\n", + "cvxopt==1.3.2\n", + "cvxpy==1.3.3\n", + "cycler==0.12.1\n", + "cymem==2.0.8\n", + "Cython==3.0.9\n", + "dask==2023.8.1\n", + "datascience==0.17.6\n", + "datasets==2.18.0\n", + "db-dtypes==1.2.0\n", + "dbus-python==1.2.18\n", + "debugpy==1.6.6\n", + "decorator==4.4.2\n", + "defusedxml==0.7.1\n", + "Deprecated==1.2.14\n", + "dill==0.3.8\n", + "distributed==2023.8.1\n", + "distro==1.7.0\n", + "dlib==19.24.2\n", + "dm-tree==0.1.8\n", + "docstring_parser==0.16\n", + "docutils==0.18.1\n", + "dopamine-rl==4.0.6\n", + "duckdb==0.9.2\n", + "earthengine-api==0.1.395\n", + "easydict==1.13\n", + "ecos==2.0.13\n", + "editdistance==0.6.2\n", + "eerepr==0.0.4\n", + "en-core-web-sm @ https://github.com/explosion/spacy-models/releases/download/en_core_web_sm-3.7.1/en_core_web_sm-3.7.1-py3-none-any.whl#sha256=86cc141f63942d4b2c5fcee06630fd6f904788d2f0ab005cce45aadb8fb73889\n", + "entrypoints==0.4\n", + "et-xmlfile==1.1.0\n", + "etils==1.7.0\n", + "etuples==0.3.9\n", + "evaluate==0.4.1\n", + "exceptiongroup==1.2.0\n", + "fastai==2.7.14\n", + "fastcore==1.5.29\n", + "fastdownload==0.0.7\n", + "fastjsonschema==2.19.1\n", + "fastprogress==1.0.3\n", + "fastrlock==0.8.2\n", + "filelock==3.13.3\n", + "fiona==1.9.6\n", + "firebase-admin==5.3.0\n", + "flair==0.13.1\n", + "Flask==2.2.5\n", + "flatbuffers==24.3.25\n", + "flax==0.8.2\n", + "folium==0.14.0\n", + "fonttools==4.50.0\n", + "frozendict==2.4.0\n", + "frozenlist==1.4.1\n", + "fsspec==2023.6.0\n", + "ftfy==6.2.0\n", + "future==0.18.3\n", + "gast==0.5.4\n", + "gcsfs==2023.6.0\n", + "GDAL==3.6.4\n", + "gdown==4.7.3\n", + "geemap==0.32.0\n", + "gensim==4.3.2\n", + "geocoder==1.38.1\n", + "geographiclib==2.0\n", + "geopandas==0.13.2\n", + "geopy==2.3.0\n", + "gin-config==0.5.0\n", + "glob2==0.7\n", + "google==2.0.3\n", + "google-ai-generativelanguage==0.4.0\n", + "google-api-core==2.11.1\n", + "google-api-python-client==2.84.0\n", + "google-auth==2.27.0\n", + "google-auth-httplib2==0.1.1\n", + "google-auth-oauthlib==1.2.0\n", + "google-cloud-aiplatform==1.45.0\n", + "google-cloud-bigquery==3.12.0\n", + "google-cloud-bigquery-connection==1.12.1\n", + "google-cloud-bigquery-storage==2.24.0\n", + "google-cloud-core==2.3.3\n", + "google-cloud-datastore==2.15.2\n", + "google-cloud-firestore==2.11.1\n", + "google-cloud-functions==1.13.3\n", + "google-cloud-iam==2.14.3\n", + "google-cloud-language==2.13.3\n", + "google-cloud-resource-manager==1.12.3\n", + "google-cloud-storage==2.8.0\n", + "google-cloud-translate==3.11.3\n", + "google-colab @ file:///colabtools/dist/google-colab-1.0.0.tar.gz#sha256=b74977b504f63978fe0c9f7c4a1c6208e068811827433cbb8bd6159529477277\n", + "google-crc32c==1.5.0\n", + "google-generativeai==0.3.2\n", + "google-pasta==0.2.0\n", + "google-resumable-media==2.7.0\n", + "googleapis-common-protos==1.63.0\n", + "googledrivedownloader==0.4\n", + "graphviz==0.20.3\n", + "greenlet==3.0.3\n", + "grpc-google-iam-v1==0.13.0\n", + "grpcio==1.62.1\n", + "grpcio-status==1.48.2\n", + "gspread==3.4.2\n", + "gspread-dataframe==3.3.1\n", + "gym==0.25.2\n", + "gym-notices==0.0.8\n", + "h5netcdf==1.3.0\n", + "h5py==3.9.0\n", + "holidays==0.45\n", + "holoviews==1.17.1\n", + "html5lib==1.1\n", + "httpimport==1.3.1\n", + "httplib2==0.22.0\n", + "huggingface-hub==0.20.3\n", + "humanize==4.7.0\n", + "hyperopt==0.2.7\n", + "ibis-framework==8.0.0\n", + "idna==3.6\n", + "imageio==2.31.6\n", + "imageio-ffmpeg==0.4.9\n", + "imagesize==1.4.1\n", + "imbalanced-learn==0.10.1\n", + "imgaug==0.4.0\n", + "importlib_metadata==7.1.0\n", + "importlib_resources==6.4.0\n", + "imutils==0.5.4\n", + "inflect==7.0.0\n", + "iniconfig==2.0.0\n", + "intel-openmp==2023.2.4\n", + "ipyevents==2.0.2\n", + "ipyfilechooser==0.6.0\n", + "ipykernel==5.5.6\n", + "ipyleaflet==0.18.2\n", + "ipython==7.34.0\n", + "ipython-genutils==0.2.0\n", + "ipython-sql==0.5.0\n", + "ipytree==0.2.2\n", + "ipywidgets==7.7.1\n", + "itsdangerous==2.1.2\n", + "Janome==0.5.0\n", + "jax==0.4.23\n", + "jaxlib @ https://storage.googleapis.com/jax-releases/cuda12/jaxlib-0.4.23+cuda12.cudnn89-cp310-cp310-manylinux2014_x86_64.whl#sha256=8e42000672599e7ec0ea7f551acfcc95dcdd0e22b05a1d1f12f97b56a9fce4a8\n", + "jeepney==0.7.1\n", + "jieba==0.42.1\n", + "Jinja2==3.1.3\n", + "jmespath==1.0.1\n", + "joblib==1.3.2\n", + "jsonpickle==3.0.3\n", + "jsonschema==4.19.2\n", + "jsonschema-specifications==2023.12.1\n", + "jupyter-client==6.1.12\n", + "jupyter-console==6.1.0\n", + "jupyter-server==1.24.0\n", + "jupyter_core==5.7.2\n", + "jupyterlab_pygments==0.3.0\n", + "jupyterlab_widgets==3.0.10\n", + "kaggle==1.5.16\n", + "kagglehub==0.2.2\n", + "keras==2.15.0\n", + "keyring==23.5.0\n", + "kiwisolver==1.4.5\n", + "langcodes==3.3.0\n", + "langdetect==1.0.9\n", + "launchpadlib==1.10.16\n", + "lazr.restfulclient==0.14.4\n", + "lazr.uri==1.0.6\n", + "lazy_loader==0.3\n", + "libclang==18.1.1\n", + "librosa==0.10.1\n", + "lightgbm==4.1.0\n", + "linkify-it-py==2.0.3\n", + "llvmlite==0.41.1\n", + "locket==1.0.0\n", + "logical-unification==0.4.6\n", + "lxml==4.9.4\n", + "malloy==2023.1067\n", + "Markdown==3.6\n", + "markdown-it-py==3.0.0\n", + "MarkupSafe==2.1.5\n", + "matplotlib==3.7.1\n", + "matplotlib-inline==0.1.6\n", + "matplotlib-venn==0.11.10\n", + "mdit-py-plugins==0.4.0\n", + "mdurl==0.1.2\n", + "miniKanren==1.0.3\n", + "missingno==0.5.2\n", + "mistune==0.8.4\n", + "mizani==0.9.3\n", + "mkl==2023.2.0\n", + "ml-dtypes==0.2.0\n", + "mlxtend==0.22.0\n", + "more-itertools==10.1.0\n", + "moviepy==1.0.3\n", + "mpld3==0.5.10\n", + "mpmath==1.3.0\n", + "msgpack==1.0.8\n", + "multidict==6.0.5\n", + "multipledispatch==1.0.0\n", + "multiprocess==0.70.16\n", + "multitasking==0.0.11\n", + "murmurhash==1.0.10\n", + "music21==9.1.0\n", + "natsort==8.4.0\n", + "nbclassic==1.0.0\n", + "nbclient==0.10.0\n", + "nbconvert==6.5.4\n", + "nbformat==5.10.3\n", + "nest-asyncio==1.6.0\n", + "networkx==3.2.1\n", + "nibabel==4.0.2\n", + "nltk==3.8.1\n", + "notebook==6.5.5\n", + "notebook_shim==0.2.4\n", + "numba==0.58.1\n", + "numexpr==2.9.0\n", + "numpy==1.25.2\n", + "nvidia-cublas-cu12==12.1.3.1\n", + "nvidia-cuda-cupti-cu12==12.1.105\n", + "nvidia-cuda-nvrtc-cu12==12.1.105\n", + "nvidia-cuda-runtime-cu12==12.1.105\n", + "nvidia-cudnn-cu12==8.9.2.26\n", + "nvidia-cufft-cu12==11.0.2.54\n", + "nvidia-curand-cu12==10.3.2.106\n", + "nvidia-cusolver-cu12==11.4.5.107\n", + "nvidia-cusparse-cu12==12.1.0.106\n", + "nvidia-nccl-cu12==2.19.3\n", + "nvidia-nvjitlink-cu12==12.4.99\n", + "nvidia-nvtx-cu12==12.1.105\n", + "oauth2client==4.1.3\n", + "oauthlib==3.2.2\n", + "opencv-contrib-python==4.8.0.76\n", + "opencv-python==4.8.0.76\n", + "opencv-python-headless==4.9.0.80\n", + "openpyxl==3.1.2\n", + "opt-einsum==3.3.0\n", + "optax==0.2.2\n", + "orbax-checkpoint==0.4.4\n", + "osqp==0.6.2.post8\n", + "packaging==24.0\n", + "pandas==1.5.3\n", + "pandas-datareader==0.10.0\n", + "pandas-gbq==0.19.2\n", + "pandas-stubs==1.5.3.230304\n", + "pandocfilters==1.5.1\n", + "panel==1.3.8\n", + "param==2.1.0\n", + "parso==0.8.3\n", + "parsy==2.1\n", + "partd==1.4.1\n", + "pathlib==1.0.1\n", + "patsy==0.5.6\n", + "peewee==3.17.1\n", + "pexpect==4.9.0\n", + "pickleshare==0.7.5\n", + "Pillow==9.4.0\n", + "pip-tools==6.13.0\n", + "platformdirs==4.2.0\n", + "plotly==5.15.0\n", + "plotnine==0.12.4\n", + "pluggy==1.4.0\n", + "polars==0.20.2\n", + "pooch==1.8.1\n", + "portpicker==1.5.2\n", + "pptree==3.1\n", + "prefetch-generator==1.0.3\n", + "preshed==3.0.9\n", + "prettytable==3.10.0\n", + "proglog==0.1.10\n", + "progressbar2==4.2.0\n", + "prometheus_client==0.20.0\n", + "promise==2.3\n", + "prompt-toolkit==3.0.43\n", + "prophet==1.1.5\n", + "proto-plus==1.23.0\n", + "protobuf==3.20.3\n", + "psutil==5.9.5\n", + "psycopg2==2.9.9\n", + "ptyprocess==0.7.0\n", + "py-cpuinfo==9.0.0\n", + "py4j==0.10.9.7\n", + "pyarrow==14.0.2\n", + "pyarrow-hotfix==0.6\n", + "pyasn1==0.6.0\n", + "pyasn1_modules==0.4.0\n", + "pycocotools==2.0.7\n", + "pycparser==2.21\n", + "pydantic==2.6.4\n", + "pydantic_core==2.16.3\n", + "pydata-google-auth==1.8.2\n", + "pydot==1.4.2\n", + "pydot-ng==2.0.0\n", + "pydotplus==2.0.2\n", + "PyDrive==1.3.1\n", + "PyDrive2==1.6.3\n", + "pyerfa==2.0.1.1\n", + "pygame==2.5.2\n", + "Pygments==2.16.1\n", + "PyGObject==3.42.1\n", + "PyJWT==2.3.0\n", + "pymc==5.10.4\n", + "pymystem3==0.2.0\n", + "PyOpenGL==3.1.7\n", + "pyOpenSSL==24.1.0\n", + "pyparsing==3.1.2\n", + "pyperclip==1.8.2\n", + "pyproj==3.6.1\n", + "pyproject_hooks==1.0.0\n", + "pyshp==2.3.1\n", + "PySocks==1.7.1\n", + "pytensor==2.18.6\n", + "pytest==7.4.4\n", + "python-apt @ file:///backend-container/containers/python_apt-0.0.0-cp310-cp310-linux_x86_64.whl#sha256=b209c7165d6061963abe611492f8c91c3bcef4b7a6600f966bab58900c63fefa\n", + "python-box==7.1.1\n", + "python-dateutil==2.8.2\n", + "python-louvain==0.16\n", + "python-slugify==8.0.4\n", + "python-utils==3.8.2\n", + "pytorch_revgrad==0.2.0\n", + "pytz==2023.4\n", + "pyviz_comms==3.0.2\n", + "PyWavelets==1.5.0\n", + "PyYAML==6.0.1\n", + "pyzmq==23.2.1\n", + "qdldl==0.1.7.post0\n", + "qudida==0.0.4\n", + "ratelim==0.1.6\n", + "referencing==0.34.0\n", + "regex==2023.12.25\n", + "requests==2.31.0\n", + "requests-oauthlib==1.4.1\n", + "requirements-parser==0.7.0\n", + "responses==0.18.0\n", + "rich==13.7.1\n", + "rpds-py==0.18.0\n", + "rpy2==3.4.2\n", + "rsa==4.9\n", + "s3transfer==0.10.1\n", + "safetensors==0.4.2\n", + "scikit-image==0.19.3\n", + "scikit-learn==1.2.2\n", + "scipy==1.11.4\n", + "scooby==0.9.2\n", + "scs==3.2.4.post1\n", + "seaborn==0.13.1\n", + "SecretStorage==3.3.1\n", + "segtok==1.5.11\n", + "semver==3.0.2\n", + "Send2Trash==1.8.2\n", + "sentencepiece==0.1.99\n", + "seqeval==1.2.2\n", + "shapely==2.0.3\n", + "six==1.16.0\n", + "sklearn-pandas==2.2.0\n", + "smart-open==6.4.0\n", + "sniffio==1.3.1\n", + "snowballstemmer==2.2.0\n", + "sortedcontainers==2.4.0\n", + "soundfile==0.12.1\n", + "soupsieve==2.5\n", + "soxr==0.3.7\n", + "spacy==3.7.4\n", + "spacy-legacy==3.0.12\n", + "spacy-loggers==1.0.5\n", + "Sphinx==5.0.2\n", + "sphinxcontrib-applehelp==1.0.8\n", + "sphinxcontrib-devhelp==1.0.6\n", + "sphinxcontrib-htmlhelp==2.0.5\n", + "sphinxcontrib-jsmath==1.0.1\n", + "sphinxcontrib-qthelp==1.0.7\n", + "sphinxcontrib-serializinghtml==1.1.10\n", + "SQLAlchemy==2.0.29\n", + "sqlglot==20.11.0\n", + "sqlitedict==2.1.0\n", + "sqlparse==0.4.4\n", + "srsly==2.4.8\n", + "stanio==0.5.0\n", + "statsmodels==0.14.1\n", + "sympy==1.12\n", + "tables==3.8.0\n", + "tabulate==0.9.0\n", + "tbb==2021.12.0\n", + "tblib==3.0.0\n", + "tenacity==8.2.3\n", + "tensorboard==2.15.2\n", + "tensorboard-data-server==0.7.2\n", + "tensorflow==2.15.0\n", + "tensorflow-datasets==4.9.4\n", + "tensorflow-estimator==2.15.0\n", + "tensorflow-gcs-config==2.15.0\n", + "tensorflow-hub==0.16.1\n", + "tensorflow-io-gcs-filesystem==0.36.0\n", + "tensorflow-metadata==1.14.0\n", + "tensorflow-probability==0.23.0\n", + "tensorstore==0.1.45\n", + "termcolor==2.4.0\n", + "terminado==0.18.1\n", + "text-unidecode==1.3\n", + "textblob==0.17.1\n", + "tf-slim==1.1.0\n", + "tf_keras==2.15.1\n", + "thinc==8.2.3\n", + "threadpoolctl==3.4.0\n", + "tifffile==2024.2.12\n", + "tinycss2==1.2.1\n", + "tokenizers==0.15.2\n", + "toml==0.10.2\n", + "tomli==2.0.1\n", + "toolz==0.12.1\n", + "torch @ https://download.pytorch.org/whl/cu121/torch-2.2.1%2Bcu121-cp310-cp310-linux_x86_64.whl#sha256=1adf430f01ff649c848ac021785e18007b0714fdde68e4e65bd0c640bf3fb8e1\n", + "torchaudio @ https://download.pytorch.org/whl/cu121/torchaudio-2.2.1%2Bcu121-cp310-cp310-linux_x86_64.whl#sha256=23f6236429e2bf676b820e8e7221a1d58aaf908bff2ba2665aa852df71a97961\n", + "torchdata==0.7.1\n", + "torchsummary==1.5.1\n", + "torchtext==0.17.1\n", + "torchvision @ https://download.pytorch.org/whl/cu121/torchvision-0.17.1%2Bcu121-cp310-cp310-linux_x86_64.whl#sha256=27af47915f6e762c1d44e58e8088d22ac97445668f9f793524032b2baf4f34bd\n", + "tornado==6.3.3\n", + "tqdm==4.66.2\n", + "traitlets==5.7.1\n", + "traittypes==0.2.1\n", + "transformer-smaller-training-vocab==0.3.3\n", + "transformers==4.39.2\n", + "triton==2.2.0\n", + "tweepy==4.14.0\n", + "typer==0.9.4\n", + "types-pytz==2024.1.0.20240203\n", + "types-setuptools==69.2.0.20240317\n", + "typing_extensions==4.10.0\n", + "tzlocal==5.2\n", + "uc-micro-py==1.0.3\n", + "uritemplate==4.1.1\n", + "urllib3==1.26.18\n", + "vega-datasets==0.9.0\n", + "wadllib==1.3.6\n", + "wasabi==1.1.2\n", + "wcwidth==0.2.13\n", + "weasel==0.3.4\n", + "webcolors==1.13\n", + "webencodings==0.5.1\n", + "websocket-client==1.7.0\n", + "Werkzeug==3.0.1\n", + "widgetsnbextension==3.6.6\n", + "Wikipedia-API==0.6.0\n", + "wordcloud==1.9.3\n", + "wrapt==1.14.1\n", + "xarray==2023.7.0\n", + "xarray-einstats==0.7.0\n", + "xgboost==2.0.3\n", + "xlrd==2.0.1\n", + "xxhash==3.4.1\n", + "xyzservices==2023.10.1\n", + "yarl==1.9.4\n", + "yellowbrick==1.5\n", + "yfinance==0.2.37\n", + "zict==3.0.0\n", + "zipp==3.18.1\n" + ] + } + ] + }, + { + "cell_type": "code", + "source": [ + "!python --version" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "eYssGgM-R3Rn", + "outputId": "e9d25a2e-9dba-46cd-ec3e-1bfe83745d08" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Python 3.10.12\n" + ] + } + ] + }, + { + "cell_type": "code", + "source": [ + "!pip install pandas_profiling" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "N27fEKgrPtH8", + "outputId": "dcca85e7-fbaf-4de4-c594-fcae932e242c" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Collecting pandas_profiling\n", + " Downloading pandas_profiling-3.6.6-py2.py3-none-any.whl (324 kB)\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m324.4/324.4 kB\u001b[0m \u001b[31m4.8 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25hCollecting ydata-profiling (from pandas_profiling)\n", + " Downloading ydata_profiling-4.7.0-py2.py3-none-any.whl (357 kB)\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m357.9/357.9 kB\u001b[0m \u001b[31m8.1 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25hRequirement already satisfied: scipy<1.12,>=1.4.1 in /usr/local/lib/python3.10/dist-packages (from ydata-profiling->pandas_profiling) (1.11.4)\n", + "Requirement already satisfied: pandas!=1.4.0,<3,>1.1 in /usr/local/lib/python3.10/dist-packages (from ydata-profiling->pandas_profiling) (2.0.3)\n", + "Requirement already satisfied: matplotlib<3.9,>=3.2 in /usr/local/lib/python3.10/dist-packages (from ydata-profiling->pandas_profiling) (3.7.1)\n", + "Requirement already satisfied: pydantic>=2 in /usr/local/lib/python3.10/dist-packages (from ydata-profiling->pandas_profiling) (2.6.4)\n", + "Requirement already satisfied: PyYAML<6.1,>=5.0.0 in /usr/local/lib/python3.10/dist-packages (from ydata-profiling->pandas_profiling) (6.0.1)\n", + "Requirement already satisfied: jinja2<3.2,>=2.11.1 in /usr/local/lib/python3.10/dist-packages (from ydata-profiling->pandas_profiling) (3.1.3)\n", + "Collecting visions[type_image_path]<0.7.7,>=0.7.5 (from ydata-profiling->pandas_profiling)\n", + " Downloading visions-0.7.6-py3-none-any.whl (104 kB)\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m104.8/104.8 kB\u001b[0m \u001b[31m5.7 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25hRequirement already satisfied: numpy<2,>=1.16.0 in /usr/local/lib/python3.10/dist-packages (from ydata-profiling->pandas_profiling) (1.25.2)\n", + "Collecting htmlmin==0.1.12 (from ydata-profiling->pandas_profiling)\n", + " Downloading htmlmin-0.1.12.tar.gz (19 kB)\n", + " Preparing metadata (setup.py) ... \u001b[?25l\u001b[?25hdone\n", + "Collecting phik<0.13,>=0.11.1 (from ydata-profiling->pandas_profiling)\n", + " Downloading phik-0.12.4-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (686 kB)\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m686.1/686.1 kB\u001b[0m \u001b[31m11.5 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25hRequirement already satisfied: requests<3,>=2.24.0 in /usr/local/lib/python3.10/dist-packages (from ydata-profiling->pandas_profiling) (2.31.0)\n", + "Requirement already satisfied: tqdm<5,>=4.48.2 in /usr/local/lib/python3.10/dist-packages (from ydata-profiling->pandas_profiling) (4.66.2)\n", + "Collecting seaborn<0.13,>=0.10.1 (from ydata-profiling->pandas_profiling)\n", + " Downloading seaborn-0.12.2-py3-none-any.whl (293 kB)\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m293.3/293.3 kB\u001b[0m \u001b[31m10.9 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25hCollecting multimethod<2,>=1.4 (from ydata-profiling->pandas_profiling)\n", + " Downloading multimethod-1.11.2-py3-none-any.whl (10 kB)\n", + "Requirement already satisfied: statsmodels<1,>=0.13.2 in /usr/local/lib/python3.10/dist-packages (from ydata-profiling->pandas_profiling) (0.14.1)\n", + "Collecting typeguard<5,>=4.1.2 (from ydata-profiling->pandas_profiling)\n", + " Downloading typeguard-4.2.1-py3-none-any.whl (34 kB)\n", + "Collecting imagehash==4.3.1 (from ydata-profiling->pandas_profiling)\n", + " Downloading ImageHash-4.3.1-py2.py3-none-any.whl (296 kB)\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m296.5/296.5 kB\u001b[0m \u001b[31m13.3 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25hRequirement already satisfied: wordcloud>=1.9.1 in /usr/local/lib/python3.10/dist-packages (from ydata-profiling->pandas_profiling) (1.9.3)\n", + "Collecting dacite>=1.8 (from ydata-profiling->pandas_profiling)\n", + " Downloading dacite-1.8.1-py3-none-any.whl (14 kB)\n", + "Requirement already satisfied: numba<1,>=0.56.0 in /usr/local/lib/python3.10/dist-packages (from ydata-profiling->pandas_profiling) (0.58.1)\n", + "Requirement already satisfied: PyWavelets in /usr/local/lib/python3.10/dist-packages (from imagehash==4.3.1->ydata-profiling->pandas_profiling) (1.6.0)\n", + "Requirement already satisfied: pillow in /usr/local/lib/python3.10/dist-packages (from imagehash==4.3.1->ydata-profiling->pandas_profiling) (9.4.0)\n", + "Requirement already satisfied: MarkupSafe>=2.0 in /usr/local/lib/python3.10/dist-packages (from jinja2<3.2,>=2.11.1->ydata-profiling->pandas_profiling) (2.1.5)\n", + "Requirement already satisfied: contourpy>=1.0.1 in /usr/local/lib/python3.10/dist-packages (from matplotlib<3.9,>=3.2->ydata-profiling->pandas_profiling) (1.2.1)\n", + "Requirement already satisfied: cycler>=0.10 in /usr/local/lib/python3.10/dist-packages (from matplotlib<3.9,>=3.2->ydata-profiling->pandas_profiling) (0.12.1)\n", + "Requirement already satisfied: fonttools>=4.22.0 in /usr/local/lib/python3.10/dist-packages (from matplotlib<3.9,>=3.2->ydata-profiling->pandas_profiling) (4.50.0)\n", + "Requirement already satisfied: kiwisolver>=1.0.1 in /usr/local/lib/python3.10/dist-packages (from matplotlib<3.9,>=3.2->ydata-profiling->pandas_profiling) (1.4.5)\n", + "Requirement already satisfied: packaging>=20.0 in /usr/local/lib/python3.10/dist-packages (from matplotlib<3.9,>=3.2->ydata-profiling->pandas_profiling) (24.0)\n", + "Requirement already satisfied: pyparsing>=2.3.1 in /usr/local/lib/python3.10/dist-packages (from matplotlib<3.9,>=3.2->ydata-profiling->pandas_profiling) (3.1.2)\n", + "Requirement already satisfied: python-dateutil>=2.7 in /usr/local/lib/python3.10/dist-packages (from matplotlib<3.9,>=3.2->ydata-profiling->pandas_profiling) (2.8.2)\n", + "Requirement already satisfied: llvmlite<0.42,>=0.41.0dev0 in /usr/local/lib/python3.10/dist-packages (from numba<1,>=0.56.0->ydata-profiling->pandas_profiling) (0.41.1)\n", + "Requirement already satisfied: pytz>=2020.1 in /usr/local/lib/python3.10/dist-packages (from pandas!=1.4.0,<3,>1.1->ydata-profiling->pandas_profiling) (2023.4)\n", + "Requirement already satisfied: tzdata>=2022.1 in /usr/local/lib/python3.10/dist-packages (from pandas!=1.4.0,<3,>1.1->ydata-profiling->pandas_profiling) (2024.1)\n", + "Requirement already satisfied: joblib>=0.14.1 in /usr/local/lib/python3.10/dist-packages (from phik<0.13,>=0.11.1->ydata-profiling->pandas_profiling) (1.3.2)\n", + "Requirement already satisfied: annotated-types>=0.4.0 in /usr/local/lib/python3.10/dist-packages (from pydantic>=2->ydata-profiling->pandas_profiling) (0.6.0)\n", + "Requirement already satisfied: pydantic-core==2.16.3 in /usr/local/lib/python3.10/dist-packages (from pydantic>=2->ydata-profiling->pandas_profiling) (2.16.3)\n", + "Requirement already satisfied: typing-extensions>=4.6.1 in /usr/local/lib/python3.10/dist-packages (from pydantic>=2->ydata-profiling->pandas_profiling) (4.10.0)\n", + "Requirement already satisfied: charset-normalizer<4,>=2 in /usr/local/lib/python3.10/dist-packages (from requests<3,>=2.24.0->ydata-profiling->pandas_profiling) (3.3.2)\n", + "Requirement already satisfied: idna<4,>=2.5 in /usr/local/lib/python3.10/dist-packages (from requests<3,>=2.24.0->ydata-profiling->pandas_profiling) (3.6)\n", + "Requirement already satisfied: urllib3<3,>=1.21.1 in /usr/local/lib/python3.10/dist-packages (from requests<3,>=2.24.0->ydata-profiling->pandas_profiling) (2.0.7)\n", + "Requirement already satisfied: certifi>=2017.4.17 in /usr/local/lib/python3.10/dist-packages (from requests<3,>=2.24.0->ydata-profiling->pandas_profiling) (2024.2.2)\n", + "Requirement already satisfied: patsy>=0.5.4 in /usr/local/lib/python3.10/dist-packages (from statsmodels<1,>=0.13.2->ydata-profiling->pandas_profiling) (0.5.6)\n", + "Requirement already satisfied: attrs>=19.3.0 in /usr/local/lib/python3.10/dist-packages (from visions[type_image_path]<0.7.7,>=0.7.5->ydata-profiling->pandas_profiling) (23.2.0)\n", + "Requirement already satisfied: networkx>=2.4 in /usr/local/lib/python3.10/dist-packages (from visions[type_image_path]<0.7.7,>=0.7.5->ydata-profiling->pandas_profiling) (3.2.1)\n", + "Requirement already satisfied: six in /usr/local/lib/python3.10/dist-packages (from patsy>=0.5.4->statsmodels<1,>=0.13.2->ydata-profiling->pandas_profiling) (1.16.0)\n", + "Building wheels for collected packages: htmlmin\n", + " Building wheel for htmlmin (setup.py) ... \u001b[?25l\u001b[?25hdone\n", + " Created wheel for htmlmin: filename=htmlmin-0.1.12-py3-none-any.whl size=27080 sha256=51cdf362db3a9c45d6f23d79c1a47acb04f8eb3c869b8cb9dc6bb4efa92eae5e\n", + " Stored in directory: /root/.cache/pip/wheels/dd/91/29/a79cecb328d01739e64017b6fb9a1ab9d8cb1853098ec5966d\n", + "Successfully built htmlmin\n", + "Installing collected packages: htmlmin, typeguard, multimethod, dacite, imagehash, visions, seaborn, phik, ydata-profiling, pandas_profiling\n", + " Attempting uninstall: seaborn\n", + " Found existing installation: seaborn 0.13.1\n", + " Uninstalling seaborn-0.13.1:\n", + " Successfully uninstalled seaborn-0.13.1\n", + "Successfully installed dacite-1.8.1 htmlmin-0.1.12 imagehash-4.3.1 multimethod-1.11.2 pandas_profiling-3.6.6 phik-0.12.4 seaborn-0.12.2 typeguard-4.2.1 visions-0.7.6 ydata-profiling-4.7.0\n" + ] + } + ] + }, + { + "cell_type": "code", + "source": [ + "# prompt: pandas profiler\n", + "\n", + "import pandas as pd\n", + "# Load your dataset into a pandas DataFrame\n", + "df = pd.read_csv('details.csv')\n", + "\n", + "\n" + ], + "metadata": { + "id": "sT_uwnhoR4Te" + }, + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "code", + "source": [ + "\n", + "import pandas as pd" + ], + "metadata": { + "id": "tsZLsNdhQnY7" + }, + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "code", + "source": [ + "pd.DataFrame(\n", + " {'s1':[1,2,3,4],'s2':[3,4,5,6]}\n", + ")" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 175 + }, + "id": "Jsthe7wKp3vI", + "outputId": "2a0bf84e-440a-4b2b-c007-051210e3ce1f" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + " s1 s2\n", + "0 1 3\n", + "1 2 4\n", + "2 3 5\n", + "3 4 6" + ], + "text/html": [ + "\n", + "

\n", + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
s1s2
013
124
235
346
\n", + "
\n", + "
\n", + "\n", + "
\n", + " \n", + "\n", + " \n", + "\n", + " \n", + "
\n", + "\n", + "\n", + "
\n", + " \n", + "\n", + "\n", + "\n", + " \n", + "
\n", + "\n", + "
\n", + "
\n" + ], + "application/vnd.google.colaboratory.intrinsic+json": { + "type": "dataframe", + "summary": "{\n \"name\": \")\",\n \"rows\": 4,\n \"fields\": [\n {\n \"column\": \"s1\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 1,\n \"min\": 1,\n \"max\": 4,\n \"num_unique_values\": 4,\n \"samples\": [\n 2,\n 4,\n 1\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"s2\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 1,\n \"min\": 3,\n \"max\": 6,\n \"num_unique_values\": 4,\n \"samples\": [\n 4,\n 6,\n 3\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n }\n ]\n}" + } + }, + "metadata": {}, + "execution_count": 6 + } + ] + }, + { + "cell_type": "code", + "source": [], + "metadata": { + "id": "Jl0gEwpVp_jR" + }, + "execution_count": null, + "outputs": [] + } + ] +} \ No newline at end of file