Spaces:
Sleeping
Sleeping
Upload 2 files
Browse files- app.py +515 -0
- requirements.txt +58 -0
app.py
ADDED
|
@@ -0,0 +1,515 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import streamlit as st
|
| 2 |
+
import pandas as pd
|
| 3 |
+
import numpy as np
|
| 4 |
+
from datetime import datetime, timedelta
|
| 5 |
+
import plotly.express as px
|
| 6 |
+
import plotly.graph_objects as go
|
| 7 |
+
from sklearn.ensemble import IsolationForest
|
| 8 |
+
from sklearn.linear_model import LinearRegression
|
| 9 |
+
import random
|
| 10 |
+
import calendar
|
| 11 |
+
|
| 12 |
+
# Set random seed for reproducibility
|
| 13 |
+
np.random.seed(42)
|
| 14 |
+
|
| 15 |
+
def generate_device_data(num_days=90, device_type="home"):
|
| 16 |
+
"""Generate synthetic energy consumption data for devices with enhanced patterns"""
|
| 17 |
+
dates = pd.date_range(end=datetime.now(), periods=num_days*24, freq='h')
|
| 18 |
+
|
| 19 |
+
if device_type == "home":
|
| 20 |
+
devices = {
|
| 21 |
+
'HVAC': {'base': 8, 'var': 4, 'peak_hours': [14, 15, 16, 17], 'weekend_factor': 1.2},
|
| 22 |
+
'Refrigerator': {'base': 2, 'var': 0.5, 'peak_hours': [12, 13, 14], 'weekend_factor': 1.0},
|
| 23 |
+
'Washing Machine': {'base': 1, 'var': 0.8, 'peak_hours': [10, 19, 20], 'weekend_factor': 1.5},
|
| 24 |
+
'Lighting': {'base': 1.5, 'var': 0.3, 'peak_hours': [18, 19, 20, 21], 'weekend_factor': 1.1},
|
| 25 |
+
'Television': {'base': 0.5, 'var': 0.2, 'peak_hours': [20, 21, 22], 'weekend_factor': 1.3}
|
| 26 |
+
}
|
| 27 |
+
else:
|
| 28 |
+
devices = {
|
| 29 |
+
'HVAC System': {'base': 20, 'var': 8, 'peak_hours': [14, 15, 16, 17], 'weekend_factor': 0.6},
|
| 30 |
+
'Server Room': {'base': 15, 'var': 3, 'peak_hours': [12, 13, 14], 'weekend_factor': 0.9},
|
| 31 |
+
'Office Equipment': {'base': 10, 'var': 4, 'peak_hours': [9, 10, 11, 14, 15], 'weekend_factor': 0.4},
|
| 32 |
+
'Lighting': {'base': 8, 'var': 2, 'peak_hours': [9, 10, 11, 14, 15], 'weekend_factor': 0.5},
|
| 33 |
+
'Kitchen Appliances': {'base': 5, 'var': 2, 'peak_hours': [12, 13], 'weekend_factor': 0.3}
|
| 34 |
+
}
|
| 35 |
+
|
| 36 |
+
data = []
|
| 37 |
+
|
| 38 |
+
for date in dates:
|
| 39 |
+
hour = date.hour
|
| 40 |
+
is_weekend = date.weekday() >= 5
|
| 41 |
+
|
| 42 |
+
for device, params in devices.items():
|
| 43 |
+
# Add seasonal variation
|
| 44 |
+
seasonal_factor = 1 + 0.3 * np.sin(2 * np.pi * date.dayofyear / 365)
|
| 45 |
+
|
| 46 |
+
# Add peak hour variation
|
| 47 |
+
peak_factor = 1.5 if hour in params['peak_hours'] else 1
|
| 48 |
+
|
| 49 |
+
# Add weekend variation
|
| 50 |
+
weekend_factor = params['weekend_factor'] if is_weekend else 1
|
| 51 |
+
|
| 52 |
+
# Base consumption with random variation
|
| 53 |
+
consumption = (params['base'] * seasonal_factor * peak_factor * weekend_factor +
|
| 54 |
+
np.random.normal(0, params['var']))
|
| 55 |
+
|
| 56 |
+
# Add some anomalies (3% chance)
|
| 57 |
+
if np.random.random() < 0.03:
|
| 58 |
+
consumption *= np.random.choice([1.5, 2.0, 0.5])
|
| 59 |
+
|
| 60 |
+
data.append({
|
| 61 |
+
'Date': date,
|
| 62 |
+
'Device': device,
|
| 63 |
+
'Consumption': max(0, consumption),
|
| 64 |
+
'Hour': hour,
|
| 65 |
+
'Weekday': date.strftime('%A'),
|
| 66 |
+
'Weekend': is_weekend
|
| 67 |
+
})
|
| 68 |
+
|
| 69 |
+
return pd.DataFrame(data)
|
| 70 |
+
|
| 71 |
+
def detect_anomalies(df):
|
| 72 |
+
"""Enhanced anomaly detection using Isolation Forest with multiple features"""
|
| 73 |
+
iso_forest = IsolationForest(contamination=0.03, random_state=42)
|
| 74 |
+
by_device = df.groupby('Device')
|
| 75 |
+
|
| 76 |
+
anomalies = []
|
| 77 |
+
for device, group in by_device:
|
| 78 |
+
# Use multiple features for anomaly detection
|
| 79 |
+
features = group[['Consumption', 'Hour']].copy()
|
| 80 |
+
features['Weekend'] = group['Weekend'].astype(int)
|
| 81 |
+
|
| 82 |
+
predictions = iso_forest.fit_predict(features)
|
| 83 |
+
anomaly_indices = predictions == -1
|
| 84 |
+
|
| 85 |
+
anomaly_data = group[anomaly_indices]
|
| 86 |
+
|
| 87 |
+
for _, row in anomaly_data.iterrows():
|
| 88 |
+
anomalies.append({
|
| 89 |
+
'Device': device,
|
| 90 |
+
'Date': row['Date'],
|
| 91 |
+
'Consumption': row['Consumption'],
|
| 92 |
+
'Hour': row['Hour'],
|
| 93 |
+
'Weekday': row['Weekday']
|
| 94 |
+
})
|
| 95 |
+
|
| 96 |
+
return pd.DataFrame(anomalies)
|
| 97 |
+
|
| 98 |
+
def generate_insights(df):
|
| 99 |
+
"""Generate detailed insights from the energy consumption data"""
|
| 100 |
+
insights = []
|
| 101 |
+
|
| 102 |
+
# Peak usage analysis
|
| 103 |
+
peak_hours = df.groupby(['Device', 'Hour'])['Consumption'].mean().reset_index()
|
| 104 |
+
for device in df['Device'].unique():
|
| 105 |
+
device_peaks = peak_hours[peak_hours['Device'] == device].nlargest(3, 'Consumption')
|
| 106 |
+
insights.append({
|
| 107 |
+
'Type': 'Peak Hours',
|
| 108 |
+
'Device': device,
|
| 109 |
+
'Description': f"Peak usage hours: {', '.join(map(str, device_peaks['Hour']))}",
|
| 110 |
+
'Impact': 'High'
|
| 111 |
+
})
|
| 112 |
+
|
| 113 |
+
# Weekend vs Weekday analysis
|
| 114 |
+
weekend_comparison = df.groupby(['Device', 'Weekend'])['Consumption'].mean().unstack()
|
| 115 |
+
for device in weekend_comparison.index:
|
| 116 |
+
diff_pct = ((weekend_comparison.loc[device, True] - weekend_comparison.loc[device, False]) /
|
| 117 |
+
weekend_comparison.loc[device, False] * 100)
|
| 118 |
+
insights.append({
|
| 119 |
+
'Type': 'Weekend Pattern',
|
| 120 |
+
'Device': device,
|
| 121 |
+
'Description': f"{'Higher' if diff_pct > 0 else 'Lower'} weekend usage by {abs(diff_pct):.1f}%",
|
| 122 |
+
'Impact': 'Medium' if abs(diff_pct) < 20 else 'High'
|
| 123 |
+
})
|
| 124 |
+
|
| 125 |
+
return pd.DataFrame(insights)
|
| 126 |
+
|
| 127 |
+
def predict_consumption(df, days_ahead=30):
|
| 128 |
+
"""Predict future consumption using linear regression with multiple features"""
|
| 129 |
+
predictions = []
|
| 130 |
+
|
| 131 |
+
for device in df['Device'].unique():
|
| 132 |
+
device_data = df[df['Device'] == device].copy()
|
| 133 |
+
|
| 134 |
+
# Create features for prediction
|
| 135 |
+
device_data['Day_of_Week'] = device_data['Date'].dt.dayofweek
|
| 136 |
+
device_data['Month'] = device_data['Date'].dt.month
|
| 137 |
+
device_data['Day_of_Year'] = device_data['Date'].dt.dayofyear
|
| 138 |
+
|
| 139 |
+
X = device_data[['Hour', 'Day_of_Week', 'Month', 'Day_of_Year']]
|
| 140 |
+
y = device_data['Consumption']
|
| 141 |
+
|
| 142 |
+
model = LinearRegression()
|
| 143 |
+
model.fit(X, y)
|
| 144 |
+
|
| 145 |
+
# Generate future dates
|
| 146 |
+
future_dates = pd.date_range(
|
| 147 |
+
start=df['Date'].max() + timedelta(hours=1),
|
| 148 |
+
periods=days_ahead*24,
|
| 149 |
+
freq='h'
|
| 150 |
+
)
|
| 151 |
+
|
| 152 |
+
future_X = pd.DataFrame({
|
| 153 |
+
'Hour': future_dates.hour,
|
| 154 |
+
'Day_of_Week': future_dates.dayofweek,
|
| 155 |
+
'Month': future_dates.month,
|
| 156 |
+
'Day_of_Year': future_dates.dayofyear
|
| 157 |
+
})
|
| 158 |
+
|
| 159 |
+
future_predictions = model.predict(future_X)
|
| 160 |
+
|
| 161 |
+
for date, pred in zip(future_dates, future_predictions):
|
| 162 |
+
predictions.append({
|
| 163 |
+
'Date': date,
|
| 164 |
+
'Device': device,
|
| 165 |
+
'Predicted_Consumption': max(0, pred)
|
| 166 |
+
})
|
| 167 |
+
|
| 168 |
+
return pd.DataFrame(predictions)
|
| 169 |
+
|
| 170 |
+
# Streamlit UI
|
| 171 |
+
st.set_page_config(page_title="SEMS - Smart Energy Management System", layout="wide", initial_sidebar_state="expanded")
|
| 172 |
+
|
| 173 |
+
# Custom CSS
|
| 174 |
+
st.markdown("""
|
| 175 |
+
<style>
|
| 176 |
+
.main {
|
| 177 |
+
padding: 2rem;
|
| 178 |
+
}
|
| 179 |
+
.stMetric {
|
| 180 |
+
background-color: #f0f2f6;
|
| 181 |
+
padding: 1rem;
|
| 182 |
+
border-radius: 0.5rem;
|
| 183 |
+
}
|
| 184 |
+
.insight-card {
|
| 185 |
+
background-color: #ffffff;
|
| 186 |
+
padding: 1rem;
|
| 187 |
+
border-radius: 0.5rem;
|
| 188 |
+
margin: 0.5rem 0;
|
| 189 |
+
border: 1px solid #e0e0e0;
|
| 190 |
+
}
|
| 191 |
+
</style>
|
| 192 |
+
""", unsafe_allow_html=True)
|
| 193 |
+
|
| 194 |
+
st.title("🏢 SEMS - Smart Energy Management System")
|
| 195 |
+
|
| 196 |
+
# Sidebar configuration
|
| 197 |
+
st.sidebar.title("Configuration")
|
| 198 |
+
user_type = st.sidebar.radio("Select User Type", ["Home", "Organization"])
|
| 199 |
+
analysis_period = st.sidebar.slider("Analysis Period (Days)", 30, 180, 90)
|
| 200 |
+
|
| 201 |
+
# Generate data
|
| 202 |
+
data = generate_device_data(num_days=analysis_period, device_type=user_type.lower())
|
| 203 |
+
|
| 204 |
+
# Main tabs
|
| 205 |
+
tab1, tab2, tab3, tab4 = st.tabs([
|
| 206 |
+
"📊 Usage Dashboard",
|
| 207 |
+
"🔍 Detailed Analysis",
|
| 208 |
+
"⚠️ Peak Usage Detection",
|
| 209 |
+
"📈 Forecasting"
|
| 210 |
+
])
|
| 211 |
+
|
| 212 |
+
with tab1:
|
| 213 |
+
st.header("Energy Usage Dashboard")
|
| 214 |
+
|
| 215 |
+
# Key metrics
|
| 216 |
+
col1, col2, col3 = st.columns(3)
|
| 217 |
+
|
| 218 |
+
total_consumption = data['Consumption'].sum()
|
| 219 |
+
avg_daily = data.groupby(data['Date'].dt.date)['Consumption'].sum().mean()
|
| 220 |
+
peak_hour = data.groupby('Hour')['Consumption'].mean().idxmax()
|
| 221 |
+
|
| 222 |
+
col1.metric("Total Consumption", f"{total_consumption:.1f} kWh")
|
| 223 |
+
col2.metric("Average Daily Usage", f"{avg_daily:.1f} kWh")
|
| 224 |
+
col3.metric("Peak Usage Hour", f"{peak_hour}:00")
|
| 225 |
+
|
| 226 |
+
# Daily consumption trend
|
| 227 |
+
st.subheader("Daily Consumption Trend")
|
| 228 |
+
daily_consumption = data.groupby(['Date', 'Device'])['Consumption'].sum().reset_index()
|
| 229 |
+
fig = px.line(daily_consumption, x='Date', y='Consumption', color='Device',
|
| 230 |
+
title='Energy Consumption Over Time')
|
| 231 |
+
fig.update_layout(height=400)
|
| 232 |
+
st.plotly_chart(fig, use_container_width=True)
|
| 233 |
+
|
| 234 |
+
# Device-wise distribution
|
| 235 |
+
col1, col2 = st.columns(2)
|
| 236 |
+
|
| 237 |
+
with col1:
|
| 238 |
+
device_total = data.groupby('Device')['Consumption'].sum().sort_values(ascending=True)
|
| 239 |
+
fig = px.bar(device_total, orientation='h',
|
| 240 |
+
title='Total Consumption by Device')
|
| 241 |
+
st.plotly_chart(fig, use_container_width=True)
|
| 242 |
+
|
| 243 |
+
with col2:
|
| 244 |
+
hourly_avg = data.groupby(['Hour', 'Device'])['Consumption'].mean().reset_index()
|
| 245 |
+
fig = px.line(hourly_avg, x='Hour', y='Consumption', color='Device',
|
| 246 |
+
title='Average Hourly Consumption Pattern')
|
| 247 |
+
st.plotly_chart(fig, use_container_width=True)
|
| 248 |
+
|
| 249 |
+
with tab2:
|
| 250 |
+
st.header("Detailed Analysis")
|
| 251 |
+
|
| 252 |
+
# Weekday vs Weekend analysis
|
| 253 |
+
st.subheader("Weekday vs Weekend Consumption")
|
| 254 |
+
weekly_pattern = data.groupby(['Weekday', 'Device'])['Consumption'].mean().reset_index()
|
| 255 |
+
fig = px.bar(weekly_pattern, x='Weekday', y='Consumption', color='Device',
|
| 256 |
+
title='Average Consumption by Day of Week')
|
| 257 |
+
st.plotly_chart(fig, use_container_width=True)
|
| 258 |
+
|
| 259 |
+
# Hourly heatmap
|
| 260 |
+
st.subheader("Hourly Consumption Heatmap")
|
| 261 |
+
hourly_data = data.pivot_table(
|
| 262 |
+
values='Consumption',
|
| 263 |
+
index='Hour',
|
| 264 |
+
columns='Weekday',
|
| 265 |
+
aggfunc='mean'
|
| 266 |
+
)
|
| 267 |
+
|
| 268 |
+
fig = px.imshow(hourly_data,
|
| 269 |
+
labels=dict(x="Day of Week", y="Hour of Day", color="Consumption"),
|
| 270 |
+
aspect="auto",
|
| 271 |
+
title="Consumption Intensity by Hour and Day")
|
| 272 |
+
st.plotly_chart(fig, use_container_width=True)
|
| 273 |
+
|
| 274 |
+
# Display insights
|
| 275 |
+
st.subheader("Key Insights")
|
| 276 |
+
insights = generate_insights(data)
|
| 277 |
+
|
| 278 |
+
for _, insight in insights.iterrows():
|
| 279 |
+
with st.expander(f"{insight['Device']} - {insight['Type']} (Impact: {insight['Impact']})"):
|
| 280 |
+
st.write(insight['Description'])
|
| 281 |
+
|
| 282 |
+
with tab3:
|
| 283 |
+
st.header("Peak Usage Detection")
|
| 284 |
+
|
| 285 |
+
# Detect anomalies
|
| 286 |
+
anomalies = detect_anomalies(data)
|
| 287 |
+
|
| 288 |
+
if not anomalies.empty:
|
| 289 |
+
st.warning(f"Detected {len(anomalies)} anomalies in energy consumption")
|
| 290 |
+
|
| 291 |
+
# Plot with anomalies
|
| 292 |
+
fig = go.Figure()
|
| 293 |
+
|
| 294 |
+
for device in data['Device'].unique():
|
| 295 |
+
device_data = data[data['Device'] == device]
|
| 296 |
+
device_anomalies = anomalies[anomalies['Device'] == device]
|
| 297 |
+
|
| 298 |
+
fig.add_trace(go.Scatter(
|
| 299 |
+
x=device_data['Date'],
|
| 300 |
+
y=device_data['Consumption'],
|
| 301 |
+
name=f"{device} (normal)",
|
| 302 |
+
mode='lines'
|
| 303 |
+
))
|
| 304 |
+
|
| 305 |
+
if not device_anomalies.empty:
|
| 306 |
+
fig.add_trace(go.Scatter(
|
| 307 |
+
x=device_anomalies['Date'],
|
| 308 |
+
y=device_anomalies['Consumption'],
|
| 309 |
+
name=f"{device} (anomaly)",
|
| 310 |
+
mode='markers',
|
| 311 |
+
marker=dict(size=10, symbol='x', color='red')
|
| 312 |
+
))
|
| 313 |
+
|
| 314 |
+
fig.update_layout(
|
| 315 |
+
title='Energy Consumption with Detected Anomalies',
|
| 316 |
+
height=500
|
| 317 |
+
)
|
| 318 |
+
st.plotly_chart(fig, use_container_width=True)
|
| 319 |
+
|
| 320 |
+
# Anomaly details in an expandable table
|
| 321 |
+
st.subheader("Peak Usage Details")
|
| 322 |
+
for device in anomalies['Device'].unique():
|
| 323 |
+
device_anomalies = anomalies[anomalies['Device'] == device].copy()
|
| 324 |
+
device_anomalies['Date'] = device_anomalies['Date'].dt.strftime('%Y-%m-%d %H:%M')
|
| 325 |
+
|
| 326 |
+
with st.expander(f"Anomalies for {device}"):
|
| 327 |
+
st.dataframe(
|
| 328 |
+
device_anomalies[['Date', 'Consumption', 'Hour', 'Weekday']],
|
| 329 |
+
use_container_width=True
|
| 330 |
+
)
|
| 331 |
+
|
| 332 |
+
with tab4:
|
| 333 |
+
st.header("Consumption Forecasting")
|
| 334 |
+
|
| 335 |
+
# Generate predictions
|
| 336 |
+
predictions = predict_consumption(data)
|
| 337 |
+
|
| 338 |
+
# Plot historical data and predictions
|
| 339 |
+
st.subheader("Consumption Forecast")
|
| 340 |
+
|
| 341 |
+
for device in predictions['Device'].unique():
|
| 342 |
+
with st.expander(f"Forecast for {device}"):
|
| 343 |
+
historical = data[data['Device'] == device]
|
| 344 |
+
device_predictions = predictions[predictions['Device'] == device]
|
| 345 |
+
|
| 346 |
+
fig = go.Figure()
|
| 347 |
+
|
| 348 |
+
# Historical data
|
| 349 |
+
fig.add_trace(go.Scatter(
|
| 350 |
+
x=historical['Date'],
|
| 351 |
+
y=historical['Consumption'],
|
| 352 |
+
name='Historical',
|
| 353 |
+
line=dict(color='blue')
|
| 354 |
+
))
|
| 355 |
+
|
| 356 |
+
# Predictions
|
| 357 |
+
fig.add_trace(go.Scatter(
|
| 358 |
+
x=device_predictions['Date'],
|
| 359 |
+
y=device_predictions['Predicted_Consumption'],
|
| 360 |
+
name='Forecast',
|
| 361 |
+
line=dict(color='red', dash='dash')
|
| 362 |
+
))
|
| 363 |
+
|
| 364 |
+
fig.update_layout(
|
| 365 |
+
title=f'Energy Consumption Forecast - {device}',
|
| 366 |
+
xaxis_title='Date',
|
| 367 |
+
yaxis_title='Consumption (kWh)',
|
| 368 |
+
height=400
|
| 369 |
+
)
|
| 370 |
+
|
| 371 |
+
st.plotly_chart(fig, use_container_width=True)
|
| 372 |
+
|
| 373 |
+
# Summary statistics
|
| 374 |
+
col1, col2, col3 = st.columns(3)
|
| 375 |
+
|
| 376 |
+
avg_historical = historical['Consumption'].mean()
|
| 377 |
+
avg_predicted = device_predictions['Predicted_Consumption'].mean()
|
| 378 |
+
change_pct = (avg_predicted - avg_historical) / avg_historical * 100
|
| 379 |
+
|
| 380 |
+
col1.metric(
|
| 381 |
+
"Average Historical Usage",
|
| 382 |
+
f"{avg_historical:.2f} kWh"
|
| 383 |
+
)
|
| 384 |
+
col2.metric(
|
| 385 |
+
"Average Predicted Usage",
|
| 386 |
+
f"{avg_predicted:.2f} kWh"
|
| 387 |
+
)
|
| 388 |
+
col3.metric(
|
| 389 |
+
"Expected Change",
|
| 390 |
+
f"{change_pct:+.1f}%",
|
| 391 |
+
delta_color="inverse"
|
| 392 |
+
)
|
| 393 |
+
|
| 394 |
+
# Additional insights section
|
| 395 |
+
st.subheader("Energy Saving Opportunities")
|
| 396 |
+
|
| 397 |
+
# Calculate potential savings based on patterns
|
| 398 |
+
def calculate_savings_opportunities(historical_data, predictions_data):
|
| 399 |
+
opportunities = []
|
| 400 |
+
|
| 401 |
+
# Check for peak hour reduction potential
|
| 402 |
+
peak_hours = historical_data.groupby('Hour')['Consumption'].mean()
|
| 403 |
+
top_peak_hours = peak_hours.nlargest(3)
|
| 404 |
+
potential_peak_savings = top_peak_hours.sum() * 0.2 # Assume 20% reduction possible
|
| 405 |
+
|
| 406 |
+
opportunities.append({
|
| 407 |
+
'Type': 'Peak Hour Reduction',
|
| 408 |
+
'Description': f'Reduce usage during peak hours ({", ".join(map(str, top_peak_hours.index))}:00)',
|
| 409 |
+
'Potential_Savings': f'{potential_peak_savings:.2f} kWh per day'
|
| 410 |
+
})
|
| 411 |
+
|
| 412 |
+
# Check for weekend optimization
|
| 413 |
+
weekend_data = historical_data[historical_data['Weekend']]
|
| 414 |
+
weekday_data = historical_data[~historical_data['Weekend']]
|
| 415 |
+
if weekend_data['Consumption'].mean() > weekday_data['Consumption'].mean():
|
| 416 |
+
weekend_savings = (weekend_data['Consumption'].mean() - weekday_data['Consumption'].mean()) * 2
|
| 417 |
+
opportunities.append({
|
| 418 |
+
'Type': 'Weekend Optimization',
|
| 419 |
+
'Description': 'Optimize weekend consumption patterns',
|
| 420 |
+
'Potential_Savings': f'{weekend_savings:.2f} kWh per weekend'
|
| 421 |
+
})
|
| 422 |
+
|
| 423 |
+
# Seasonal optimization
|
| 424 |
+
seasonal_data = historical_data.copy()
|
| 425 |
+
seasonal_data['Month'] = seasonal_data['Date'].dt.month
|
| 426 |
+
monthly_avg = seasonal_data.groupby('Month')['Consumption'].mean()
|
| 427 |
+
seasonal_variation = monthly_avg.max() - monthly_avg.min()
|
| 428 |
+
|
| 429 |
+
if seasonal_variation > monthly_avg.mean() * 0.3: # If variation is more than 30%
|
| 430 |
+
opportunities.append({
|
| 431 |
+
'Type': 'Seasonal Optimization',
|
| 432 |
+
'Description': 'Implement seasonal usage strategies',
|
| 433 |
+
'Potential_Savings': f'{seasonal_variation:.2f} kWh per month'
|
| 434 |
+
})
|
| 435 |
+
|
| 436 |
+
return pd.DataFrame(opportunities)
|
| 437 |
+
|
| 438 |
+
savings_opportunities = calculate_savings_opportunities(data, predictions)
|
| 439 |
+
|
| 440 |
+
for _, opportunity in savings_opportunities.iterrows():
|
| 441 |
+
with st.expander(f"💡 {opportunity['Type']}"):
|
| 442 |
+
st.write(f"**Description:** {opportunity['Description']}")
|
| 443 |
+
st.write(f"**Potential Savings:** {opportunity['Potential_Savings']}")
|
| 444 |
+
|
| 445 |
+
# Add specific recommendations based on opportunity type
|
| 446 |
+
if opportunity['Type'] == 'Peak Hour Reduction':
|
| 447 |
+
st.write("""
|
| 448 |
+
**Recommendations:**
|
| 449 |
+
- Schedule high-energy activities during off-peak hours
|
| 450 |
+
- Use automated controls to limit non-essential usage during peak times
|
| 451 |
+
- Consider energy storage solutions for peak shifting
|
| 452 |
+
""")
|
| 453 |
+
elif opportunity['Type'] == 'Weekend Optimization':
|
| 454 |
+
st.write("""
|
| 455 |
+
**Recommendations:**
|
| 456 |
+
- Review weekend device scheduling
|
| 457 |
+
- Implement automatic shutdown for unused equipment
|
| 458 |
+
- Optimize temperature settings for unoccupied periods
|
| 459 |
+
""")
|
| 460 |
+
elif opportunity['Type'] == 'Seasonal Optimization':
|
| 461 |
+
st.write("""
|
| 462 |
+
**Recommendations:**
|
| 463 |
+
- Adjust HVAC settings seasonally
|
| 464 |
+
- Implement weather-based control strategies
|
| 465 |
+
- Schedule maintenance during shoulder seasons
|
| 466 |
+
""")
|
| 467 |
+
|
| 468 |
+
# Add export functionality
|
| 469 |
+
if st.sidebar.button("Export Analysis Report"):
|
| 470 |
+
# Create report dataframe
|
| 471 |
+
report_data = {
|
| 472 |
+
'Metric': [
|
| 473 |
+
'Total Consumption',
|
| 474 |
+
'Average Daily Usage',
|
| 475 |
+
'Peak Usage Hour',
|
| 476 |
+
'Number of Anomalies',
|
| 477 |
+
'Forecast Trend'
|
| 478 |
+
],
|
| 479 |
+
'Value': [
|
| 480 |
+
f"{total_consumption:.1f} kWh",
|
| 481 |
+
f"{avg_daily:.1f} kWh",
|
| 482 |
+
f"{peak_hour}:00",
|
| 483 |
+
len(anomalies),
|
| 484 |
+
f"{change_pct:+.1f}% (30-day forecast)"
|
| 485 |
+
]
|
| 486 |
+
}
|
| 487 |
+
report_df = pd.DataFrame(report_data)
|
| 488 |
+
|
| 489 |
+
# Convert to CSV
|
| 490 |
+
csv = report_df.to_csv(index=False)
|
| 491 |
+
st.sidebar.download_button(
|
| 492 |
+
label="Download Report",
|
| 493 |
+
data=csv,
|
| 494 |
+
file_name="energy_analysis_report.csv",
|
| 495 |
+
mime="text/csv"
|
| 496 |
+
)
|
| 497 |
+
|
| 498 |
+
# Add help section in sidebar
|
| 499 |
+
with st.sidebar.expander("ℹ️ Help"):
|
| 500 |
+
st.write("""
|
| 501 |
+
**Using the Dashboard:**
|
| 502 |
+
1. Select your user type (Home/Organization)
|
| 503 |
+
2. Adjust the analysis period using the slider
|
| 504 |
+
3. Navigate through tabs to view different analyses
|
| 505 |
+
4. Use expanders to see detailed information
|
| 506 |
+
5. Export your analysis report using the button above
|
| 507 |
+
|
| 508 |
+
For additional support, contact our team at [email protected]
|
| 509 |
+
""")
|
| 510 |
+
|
| 511 |
+
# Add system status
|
| 512 |
+
st.sidebar.markdown("---")
|
| 513 |
+
st.sidebar.markdown("### System Status")
|
| 514 |
+
st.sidebar.markdown("✅ All Systems Operational")
|
| 515 |
+
st.sidebar.markdown(f"Last Updated: {datetime.now().strftime('%Y-%m-%d %H:%M:%S')}")
|
requirements.txt
ADDED
|
@@ -0,0 +1,58 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
altair==5.5.0
|
| 2 |
+
attrs==24.3.0
|
| 3 |
+
blinker==1.9.0
|
| 4 |
+
cachetools==5.5.0
|
| 5 |
+
certifi==2024.12.14
|
| 6 |
+
charset-normalizer==3.4.1
|
| 7 |
+
click==8.1.8
|
| 8 |
+
cmdstanpy==1.2.5
|
| 9 |
+
contourpy==1.3.1
|
| 10 |
+
cycler==0.12.1
|
| 11 |
+
fonttools==4.55.3
|
| 12 |
+
gitdb==4.0.12
|
| 13 |
+
GitPython==3.1.44
|
| 14 |
+
holidays==0.64
|
| 15 |
+
idna==3.10
|
| 16 |
+
importlib_resources==6.5.2
|
| 17 |
+
Jinja2==3.1.5
|
| 18 |
+
joblib==1.4.2
|
| 19 |
+
jsonschema==4.23.0
|
| 20 |
+
jsonschema-specifications==2024.10.1
|
| 21 |
+
kiwisolver==1.4.8
|
| 22 |
+
markdown-it-py==3.0.0
|
| 23 |
+
MarkupSafe==3.0.2
|
| 24 |
+
matplotlib==3.10.0
|
| 25 |
+
mdurl==0.1.2
|
| 26 |
+
narwhals==1.21.1
|
| 27 |
+
numpy==2.2.1
|
| 28 |
+
packaging==24.2
|
| 29 |
+
pandas==2.2.3
|
| 30 |
+
pillow==11.1.0
|
| 31 |
+
plotly==5.24.1
|
| 32 |
+
prophet==1.1.6
|
| 33 |
+
protobuf==5.29.2
|
| 34 |
+
pyarrow==18.1.0
|
| 35 |
+
pydeck==0.9.1
|
| 36 |
+
Pygments==2.19.1
|
| 37 |
+
pyparsing==3.2.1
|
| 38 |
+
python-dateutil==2.9.0.post0
|
| 39 |
+
pytz==2024.2
|
| 40 |
+
referencing==0.35.1
|
| 41 |
+
requests==2.32.3
|
| 42 |
+
rich==13.9.4
|
| 43 |
+
rpds-py==0.22.3
|
| 44 |
+
scikit-learn==1.6.0
|
| 45 |
+
scipy==1.15.0
|
| 46 |
+
six==1.17.0
|
| 47 |
+
smmap==5.0.2
|
| 48 |
+
stanio==0.5.1
|
| 49 |
+
streamlit==1.41.1
|
| 50 |
+
tenacity==9.0.0
|
| 51 |
+
threadpoolctl==3.5.0
|
| 52 |
+
toml==0.10.2
|
| 53 |
+
tornado==6.4.2
|
| 54 |
+
tqdm==4.67.1
|
| 55 |
+
typing_extensions==4.12.2
|
| 56 |
+
tzdata==2024.2
|
| 57 |
+
urllib3==2.3.0
|
| 58 |
+
watchdog==6.0.0
|