from PIL import Image, ImageDraw from ultralytics import YOLO import streamlit as st import tempfile import cv2 import numpy as np import base64 # Initialize YOLO model model = YOLO("best.pt") # Function to perform object detection on an image def detect_objects_image(image): results = model(image) result = results[0] output = [] num_potholes_detected = 0 num_cracks_detected = 0 num_alligator_cracks_detected = 0 for box in result.boxes: x1, y1, x2, y2 = [round(x) for x in box.xyxy[0].tolist()] class_id = box.cls[0].item() prob = round(box.conf[0].item(), 2) class_name = result.names[class_id] output.append([x1, y1, x2, y2, class_name, prob]) # Count detections by class if class_name == "pothole": num_potholes_detected += 1 elif class_name == "crack": num_cracks_detected += 1 elif class_name == "alligator-crack": num_alligator_cracks_detected += 1 return output, num_potholes_detected, num_cracks_detected, num_alligator_cracks_detected # Function to process and annotate a video def process_video(video_path, output_path, frame_interval): cap = cv2.VideoCapture(video_path) fps = int(cap.get(cv2.CAP_PROP_FPS)) frame_interval_count = int(fps * frame_interval) width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH)) height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT)) fourcc = cv2.VideoWriter_fourcc(*'mp4v') out = cv2.VideoWriter(output_path, fourcc, fps, (width, height)) frame_count = 0 detections_summary = { 'potholes': 0, 'cracks': 0, 'alligator_cracks': 0 } while cap.isOpened(): ret, frame = cap.read() if not ret: break if frame_count % frame_interval_count == 0: image = Image.fromarray(cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)) detections, num_potholes, num_cracks, num_alligator_cracks = detect_objects_image(image) detections_summary['potholes'] += num_potholes detections_summary['cracks'] += num_cracks detections_summary['alligator_cracks'] += num_alligator_cracks draw = ImageDraw.Draw(image) for detection in detections: x1, y1, x2, y2, class_name, prob = detection draw.rectangle([x1, y1, x2, y2], outline="red", width=3) text = f"{class_name} {prob:.2f}" draw.text((x1, y1), text, fill="red") annotated_frame = cv2.cvtColor(np.array(image), cv2.COLOR_RGB2BGR) else: annotated_frame = frame out.write(annotated_frame) frame_count += 1 cap.release() out.release() return detections_summary # Function to generate a download link for a file def get_download_link(file_path, text, file_type): with open(file_path, 'rb') as f: file_bytes = f.read() file_b64 = base64.b64encode(file_bytes).decode() download_link = f'{text}' return download_link # Streamlit app def main(): st.title("Road Condition Inspection") st.subheader("Upload an image or video to detect objects") # File uploader for image and video uploaded_file = st.file_uploader("Choose a file...", type=["jpg", "jpeg", "png", "mp4"]) if uploaded_file is not None: file_type = uploaded_file.type temp_file = tempfile.NamedTemporaryFile(delete=False, suffix="." + uploaded_file.name.split('.')[-1]) temp_file.write(uploaded_file.read()) temp_file.close() if file_type.startswith("image"): image = Image.open(temp_file.name) st.image(image, caption='Uploaded Image', use_column_width=True) if st.button('Detect Objects (Image)'): detections, num_potholes, num_cracks, num_alligator_cracks = detect_objects_image(image) draw = ImageDraw.Draw(image) for detection in detections: x1, y1, x2, y2, class_name, prob = detection draw.rectangle([x1, y1, x2, y2], outline="red", width=3) text = f"{class_name} {prob:.2f}" draw.text((x1, y1), text, fill="red") st.image(image, caption='Annotated Image', use_column_width=True) st.subheader("Detection Summary") if num_potholes > 0: st.write(f"Potholes Detected: {num_potholes}") if num_cracks > 0: st.write(f"Cracks Detected: {num_cracks}") if num_alligator_cracks > 0: st.write(f"Alligator Cracks Detected: {num_alligator_cracks}") annotated_image_path = temp_file.name.replace(".", "_annotated.") image.save(annotated_image_path) st.markdown(get_download_link(annotated_image_path, "Download Annotated Image", "image/png"), unsafe_allow_html=True) elif file_type.startswith("video"): video_bytes = open(temp_file.name, 'rb').read() st.video(video_bytes) if st.button('Detect Objects (Video)'): annotated_video_path = temp_file.name.replace(".", "_annotated") + ".mp4" detections_summary = process_video(temp_file.name, annotated_video_path, frame_interval=1) st.subheader("Annotated Video Download") st.markdown(get_download_link(annotated_video_path, "Download Annotated Video", "video/mp4"), unsafe_allow_html=True) st.subheader("Detection Summary") if detections_summary['potholes'] > 0: st.write(f"Total Potholes Detected: {detections_summary['potholes']}") if detections_summary['cracks'] > 0: st.write(f"Total Cracks Detected: {detections_summary['cracks']}") if detections_summary['alligator_cracks'] > 0: st.write(f"Total Alligator Cracks Detected: {detections_summary['alligator_cracks']}") if __name__ == '__main__': main()