Spaces:
Runtime error
Runtime error
Upload 3 files
Browse files- best.pt +3 -0
- main.py +153 -0
- requirements.txt +4 -0
best.pt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:b81444d786fee3c4325e135c4f6c63c6df64402f517458b3186ea032e7edacc7
|
| 3 |
+
size 87596350
|
main.py
ADDED
|
@@ -0,0 +1,153 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from PIL import Image, ImageDraw
|
| 2 |
+
from ultralytics import YOLO
|
| 3 |
+
import streamlit as st
|
| 4 |
+
import tempfile
|
| 5 |
+
import cv2
|
| 6 |
+
import numpy as np
|
| 7 |
+
import base64
|
| 8 |
+
|
| 9 |
+
# Initialize YOLO model
|
| 10 |
+
model = YOLO("best.pt")
|
| 11 |
+
|
| 12 |
+
# Function to perform object detection on an image
|
| 13 |
+
def detect_objects_image(image):
|
| 14 |
+
results = model(image)
|
| 15 |
+
result = results[0]
|
| 16 |
+
output = []
|
| 17 |
+
num_potholes_detected = 0
|
| 18 |
+
num_cracks_detected = 0
|
| 19 |
+
num_alligator_cracks_detected = 0
|
| 20 |
+
|
| 21 |
+
for box in result.boxes:
|
| 22 |
+
x1, y1, x2, y2 = [round(x) for x in box.xyxy[0].tolist()]
|
| 23 |
+
class_id = box.cls[0].item()
|
| 24 |
+
prob = round(box.conf[0].item(), 2)
|
| 25 |
+
class_name = result.names[class_id]
|
| 26 |
+
output.append([x1, y1, x2, y2, class_name, prob])
|
| 27 |
+
|
| 28 |
+
# Count detections by class
|
| 29 |
+
if class_name == "pothole":
|
| 30 |
+
num_potholes_detected += 1
|
| 31 |
+
elif class_name == "crack":
|
| 32 |
+
num_cracks_detected += 1
|
| 33 |
+
elif class_name == "alligator-crack":
|
| 34 |
+
num_alligator_cracks_detected += 1
|
| 35 |
+
|
| 36 |
+
return output, num_potholes_detected, num_cracks_detected, num_alligator_cracks_detected
|
| 37 |
+
|
| 38 |
+
# Function to process and annotate a video
|
| 39 |
+
def process_video(video_path, output_path, frame_interval):
|
| 40 |
+
cap = cv2.VideoCapture(video_path)
|
| 41 |
+
fps = int(cap.get(cv2.CAP_PROP_FPS))
|
| 42 |
+
frame_interval_count = int(fps * frame_interval)
|
| 43 |
+
width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
|
| 44 |
+
height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
|
| 45 |
+
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
|
| 46 |
+
out = cv2.VideoWriter(output_path, fourcc, fps, (width, height))
|
| 47 |
+
frame_count = 0
|
| 48 |
+
detections_summary = {
|
| 49 |
+
'potholes': 0,
|
| 50 |
+
'cracks': 0,
|
| 51 |
+
'alligator_cracks': 0
|
| 52 |
+
}
|
| 53 |
+
|
| 54 |
+
while cap.isOpened():
|
| 55 |
+
ret, frame = cap.read()
|
| 56 |
+
if not ret:
|
| 57 |
+
break
|
| 58 |
+
|
| 59 |
+
if frame_count % frame_interval_count == 0:
|
| 60 |
+
image = Image.fromarray(cv2.cvtColor(frame, cv2.COLOR_BGR2RGB))
|
| 61 |
+
detections, num_potholes, num_cracks, num_alligator_cracks = detect_objects_image(image)
|
| 62 |
+
detections_summary['potholes'] += num_potholes
|
| 63 |
+
detections_summary['cracks'] += num_cracks
|
| 64 |
+
detections_summary['alligator_cracks'] += num_alligator_cracks
|
| 65 |
+
|
| 66 |
+
draw = ImageDraw.Draw(image)
|
| 67 |
+
for detection in detections:
|
| 68 |
+
x1, y1, x2, y2, class_name, prob = detection
|
| 69 |
+
draw.rectangle([x1, y1, x2, y2], outline="red", width=3)
|
| 70 |
+
text = f"{class_name} {prob:.2f}"
|
| 71 |
+
draw.text((x1, y1), text, fill="red")
|
| 72 |
+
|
| 73 |
+
annotated_frame = cv2.cvtColor(np.array(image), cv2.COLOR_RGB2BGR)
|
| 74 |
+
else:
|
| 75 |
+
annotated_frame = frame
|
| 76 |
+
|
| 77 |
+
out.write(annotated_frame)
|
| 78 |
+
frame_count += 1
|
| 79 |
+
|
| 80 |
+
cap.release()
|
| 81 |
+
out.release()
|
| 82 |
+
|
| 83 |
+
return detections_summary
|
| 84 |
+
|
| 85 |
+
# Function to generate a download link for a file
|
| 86 |
+
def get_download_link(file_path, text, file_type):
|
| 87 |
+
with open(file_path, 'rb') as f:
|
| 88 |
+
file_bytes = f.read()
|
| 89 |
+
file_b64 = base64.b64encode(file_bytes).decode()
|
| 90 |
+
download_link = f'<a href="data:{file_type};base64,{file_b64}" download="{text}">{text}</a>'
|
| 91 |
+
return download_link
|
| 92 |
+
|
| 93 |
+
# Streamlit app
|
| 94 |
+
def main():
|
| 95 |
+
st.title("Road Condition Inspection")
|
| 96 |
+
st.subheader("Upload an image or video to detect objects")
|
| 97 |
+
|
| 98 |
+
# File uploader for image and video
|
| 99 |
+
uploaded_file = st.file_uploader("Choose a file...", type=["jpg", "jpeg", "png", "mp4"])
|
| 100 |
+
|
| 101 |
+
if uploaded_file is not None:
|
| 102 |
+
file_type = uploaded_file.type
|
| 103 |
+
temp_file = tempfile.NamedTemporaryFile(delete=False, suffix="." + uploaded_file.name.split('.')[-1])
|
| 104 |
+
temp_file.write(uploaded_file.read())
|
| 105 |
+
temp_file.close()
|
| 106 |
+
|
| 107 |
+
if file_type.startswith("image"):
|
| 108 |
+
image = Image.open(temp_file.name)
|
| 109 |
+
st.image(image, caption='Uploaded Image', use_column_width=True)
|
| 110 |
+
|
| 111 |
+
if st.button('Detect Objects (Image)'):
|
| 112 |
+
detections, num_potholes, num_cracks, num_alligator_cracks = detect_objects_image(image)
|
| 113 |
+
draw = ImageDraw.Draw(image)
|
| 114 |
+
for detection in detections:
|
| 115 |
+
x1, y1, x2, y2, class_name, prob = detection
|
| 116 |
+
draw.rectangle([x1, y1, x2, y2], outline="red", width=3)
|
| 117 |
+
text = f"{class_name} {prob:.2f}"
|
| 118 |
+
draw.text((x1, y1), text, fill="red")
|
| 119 |
+
|
| 120 |
+
st.image(image, caption='Annotated Image', use_column_width=True)
|
| 121 |
+
st.subheader("Detection Summary")
|
| 122 |
+
if num_potholes > 0:
|
| 123 |
+
st.write(f"Potholes Detected: {num_potholes}")
|
| 124 |
+
if num_cracks > 0:
|
| 125 |
+
st.write(f"Cracks Detected: {num_cracks}")
|
| 126 |
+
if num_alligator_cracks > 0:
|
| 127 |
+
st.write(f"Alligator Cracks Detected: {num_alligator_cracks}")
|
| 128 |
+
|
| 129 |
+
annotated_image_path = temp_file.name.replace(".", "_annotated.")
|
| 130 |
+
image.save(annotated_image_path)
|
| 131 |
+
st.markdown(get_download_link(annotated_image_path, "Download Annotated Image", "image/png"), unsafe_allow_html=True)
|
| 132 |
+
|
| 133 |
+
elif file_type.startswith("video"):
|
| 134 |
+
video_bytes = open(temp_file.name, 'rb').read()
|
| 135 |
+
st.video(video_bytes)
|
| 136 |
+
|
| 137 |
+
if st.button('Detect Objects (Video)'):
|
| 138 |
+
annotated_video_path = temp_file.name.replace(".", "_annotated") + ".mp4"
|
| 139 |
+
detections_summary = process_video(temp_file.name, annotated_video_path, frame_interval=1)
|
| 140 |
+
|
| 141 |
+
st.subheader("Annotated Video Download")
|
| 142 |
+
st.markdown(get_download_link(annotated_video_path, "Download Annotated Video", "video/mp4"), unsafe_allow_html=True)
|
| 143 |
+
|
| 144 |
+
st.subheader("Detection Summary")
|
| 145 |
+
if detections_summary['potholes'] > 0:
|
| 146 |
+
st.write(f"Total Potholes Detected: {detections_summary['potholes']}")
|
| 147 |
+
if detections_summary['cracks'] > 0:
|
| 148 |
+
st.write(f"Total Cracks Detected: {detections_summary['cracks']}")
|
| 149 |
+
if detections_summary['alligator_cracks'] > 0:
|
| 150 |
+
st.write(f"Total Alligator Cracks Detected: {detections_summary['alligator_cracks']}")
|
| 151 |
+
|
| 152 |
+
if __name__ == '__main__':
|
| 153 |
+
main()
|
requirements.txt
ADDED
|
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
ultralytics
|
| 2 |
+
gtts
|
| 3 |
+
streamlit
|
| 4 |
+
pillow
|