Spaces:
Runtime error
Runtime error
Upload 3 files
Browse files- best.pt +3 -0
- main.py +153 -0
- requirements.txt +4 -0
best.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b81444d786fee3c4325e135c4f6c63c6df64402f517458b3186ea032e7edacc7
|
3 |
+
size 87596350
|
main.py
ADDED
@@ -0,0 +1,153 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from PIL import Image, ImageDraw
|
2 |
+
from ultralytics import YOLO
|
3 |
+
import streamlit as st
|
4 |
+
import tempfile
|
5 |
+
import cv2
|
6 |
+
import numpy as np
|
7 |
+
import base64
|
8 |
+
|
9 |
+
# Initialize YOLO model
|
10 |
+
model = YOLO("best.pt")
|
11 |
+
|
12 |
+
# Function to perform object detection on an image
|
13 |
+
def detect_objects_image(image):
|
14 |
+
results = model(image)
|
15 |
+
result = results[0]
|
16 |
+
output = []
|
17 |
+
num_potholes_detected = 0
|
18 |
+
num_cracks_detected = 0
|
19 |
+
num_alligator_cracks_detected = 0
|
20 |
+
|
21 |
+
for box in result.boxes:
|
22 |
+
x1, y1, x2, y2 = [round(x) for x in box.xyxy[0].tolist()]
|
23 |
+
class_id = box.cls[0].item()
|
24 |
+
prob = round(box.conf[0].item(), 2)
|
25 |
+
class_name = result.names[class_id]
|
26 |
+
output.append([x1, y1, x2, y2, class_name, prob])
|
27 |
+
|
28 |
+
# Count detections by class
|
29 |
+
if class_name == "pothole":
|
30 |
+
num_potholes_detected += 1
|
31 |
+
elif class_name == "crack":
|
32 |
+
num_cracks_detected += 1
|
33 |
+
elif class_name == "alligator-crack":
|
34 |
+
num_alligator_cracks_detected += 1
|
35 |
+
|
36 |
+
return output, num_potholes_detected, num_cracks_detected, num_alligator_cracks_detected
|
37 |
+
|
38 |
+
# Function to process and annotate a video
|
39 |
+
def process_video(video_path, output_path, frame_interval):
|
40 |
+
cap = cv2.VideoCapture(video_path)
|
41 |
+
fps = int(cap.get(cv2.CAP_PROP_FPS))
|
42 |
+
frame_interval_count = int(fps * frame_interval)
|
43 |
+
width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
|
44 |
+
height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
|
45 |
+
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
|
46 |
+
out = cv2.VideoWriter(output_path, fourcc, fps, (width, height))
|
47 |
+
frame_count = 0
|
48 |
+
detections_summary = {
|
49 |
+
'potholes': 0,
|
50 |
+
'cracks': 0,
|
51 |
+
'alligator_cracks': 0
|
52 |
+
}
|
53 |
+
|
54 |
+
while cap.isOpened():
|
55 |
+
ret, frame = cap.read()
|
56 |
+
if not ret:
|
57 |
+
break
|
58 |
+
|
59 |
+
if frame_count % frame_interval_count == 0:
|
60 |
+
image = Image.fromarray(cv2.cvtColor(frame, cv2.COLOR_BGR2RGB))
|
61 |
+
detections, num_potholes, num_cracks, num_alligator_cracks = detect_objects_image(image)
|
62 |
+
detections_summary['potholes'] += num_potholes
|
63 |
+
detections_summary['cracks'] += num_cracks
|
64 |
+
detections_summary['alligator_cracks'] += num_alligator_cracks
|
65 |
+
|
66 |
+
draw = ImageDraw.Draw(image)
|
67 |
+
for detection in detections:
|
68 |
+
x1, y1, x2, y2, class_name, prob = detection
|
69 |
+
draw.rectangle([x1, y1, x2, y2], outline="red", width=3)
|
70 |
+
text = f"{class_name} {prob:.2f}"
|
71 |
+
draw.text((x1, y1), text, fill="red")
|
72 |
+
|
73 |
+
annotated_frame = cv2.cvtColor(np.array(image), cv2.COLOR_RGB2BGR)
|
74 |
+
else:
|
75 |
+
annotated_frame = frame
|
76 |
+
|
77 |
+
out.write(annotated_frame)
|
78 |
+
frame_count += 1
|
79 |
+
|
80 |
+
cap.release()
|
81 |
+
out.release()
|
82 |
+
|
83 |
+
return detections_summary
|
84 |
+
|
85 |
+
# Function to generate a download link for a file
|
86 |
+
def get_download_link(file_path, text, file_type):
|
87 |
+
with open(file_path, 'rb') as f:
|
88 |
+
file_bytes = f.read()
|
89 |
+
file_b64 = base64.b64encode(file_bytes).decode()
|
90 |
+
download_link = f'<a href="data:{file_type};base64,{file_b64}" download="{text}">{text}</a>'
|
91 |
+
return download_link
|
92 |
+
|
93 |
+
# Streamlit app
|
94 |
+
def main():
|
95 |
+
st.title("Road Condition Inspection")
|
96 |
+
st.subheader("Upload an image or video to detect objects")
|
97 |
+
|
98 |
+
# File uploader for image and video
|
99 |
+
uploaded_file = st.file_uploader("Choose a file...", type=["jpg", "jpeg", "png", "mp4"])
|
100 |
+
|
101 |
+
if uploaded_file is not None:
|
102 |
+
file_type = uploaded_file.type
|
103 |
+
temp_file = tempfile.NamedTemporaryFile(delete=False, suffix="." + uploaded_file.name.split('.')[-1])
|
104 |
+
temp_file.write(uploaded_file.read())
|
105 |
+
temp_file.close()
|
106 |
+
|
107 |
+
if file_type.startswith("image"):
|
108 |
+
image = Image.open(temp_file.name)
|
109 |
+
st.image(image, caption='Uploaded Image', use_column_width=True)
|
110 |
+
|
111 |
+
if st.button('Detect Objects (Image)'):
|
112 |
+
detections, num_potholes, num_cracks, num_alligator_cracks = detect_objects_image(image)
|
113 |
+
draw = ImageDraw.Draw(image)
|
114 |
+
for detection in detections:
|
115 |
+
x1, y1, x2, y2, class_name, prob = detection
|
116 |
+
draw.rectangle([x1, y1, x2, y2], outline="red", width=3)
|
117 |
+
text = f"{class_name} {prob:.2f}"
|
118 |
+
draw.text((x1, y1), text, fill="red")
|
119 |
+
|
120 |
+
st.image(image, caption='Annotated Image', use_column_width=True)
|
121 |
+
st.subheader("Detection Summary")
|
122 |
+
if num_potholes > 0:
|
123 |
+
st.write(f"Potholes Detected: {num_potholes}")
|
124 |
+
if num_cracks > 0:
|
125 |
+
st.write(f"Cracks Detected: {num_cracks}")
|
126 |
+
if num_alligator_cracks > 0:
|
127 |
+
st.write(f"Alligator Cracks Detected: {num_alligator_cracks}")
|
128 |
+
|
129 |
+
annotated_image_path = temp_file.name.replace(".", "_annotated.")
|
130 |
+
image.save(annotated_image_path)
|
131 |
+
st.markdown(get_download_link(annotated_image_path, "Download Annotated Image", "image/png"), unsafe_allow_html=True)
|
132 |
+
|
133 |
+
elif file_type.startswith("video"):
|
134 |
+
video_bytes = open(temp_file.name, 'rb').read()
|
135 |
+
st.video(video_bytes)
|
136 |
+
|
137 |
+
if st.button('Detect Objects (Video)'):
|
138 |
+
annotated_video_path = temp_file.name.replace(".", "_annotated") + ".mp4"
|
139 |
+
detections_summary = process_video(temp_file.name, annotated_video_path, frame_interval=1)
|
140 |
+
|
141 |
+
st.subheader("Annotated Video Download")
|
142 |
+
st.markdown(get_download_link(annotated_video_path, "Download Annotated Video", "video/mp4"), unsafe_allow_html=True)
|
143 |
+
|
144 |
+
st.subheader("Detection Summary")
|
145 |
+
if detections_summary['potholes'] > 0:
|
146 |
+
st.write(f"Total Potholes Detected: {detections_summary['potholes']}")
|
147 |
+
if detections_summary['cracks'] > 0:
|
148 |
+
st.write(f"Total Cracks Detected: {detections_summary['cracks']}")
|
149 |
+
if detections_summary['alligator_cracks'] > 0:
|
150 |
+
st.write(f"Total Alligator Cracks Detected: {detections_summary['alligator_cracks']}")
|
151 |
+
|
152 |
+
if __name__ == '__main__':
|
153 |
+
main()
|
requirements.txt
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
ultralytics
|
2 |
+
gtts
|
3 |
+
streamlit
|
4 |
+
pillow
|