import tiktoken from langchain_text_splitters import RecursiveCharacterTextSplitter from langchain_chroma import Chroma from langchain_huggingface import HuggingFaceEmbeddings # Updated import from langchain_community.document_loaders import PyPDFLoader # Updated import from langchain.memory import ConversationSummaryBufferMemory # Remains the same for now from langchain_groq import ChatGroq import os from dotenv import load_dotenv # Load environment variables from .env file load_dotenv() tokenizer = tiktoken.get_encoding('cl100k_base') FILE_NAMEs = os.listdir('data') SYSTEM_PROMPT = """ You are an AI-powered medical assistant trained to provide prescription recommendations based on user symptoms. Your responses should be accurate, safe, and aligned with general medical guidelines. When a user provides symptoms, follow these steps: 1.Ask clarifying questions if needed to ensure accurate symptom understanding. 2.Provide a probable condition or diagnosis based on symptoms. 3.Recommend suitable over-the-counter or prescription medications (mentioning that a doctor's consultation is advised for prescriptions). 4.Offer general care advice, such as lifestyle changes or home remedies. 5.If symptoms indicate a severe or emergency condition, advise the user to seek immediate medical attention. Always be polite, professional, and ensure user safety in your responses. Avoid giving definitive diagnoses or prescriptions without medical consultation. context: {context} previous message summary: {previous_message_summary} """ human_template = "{question}" NLP_MODEL_NAME = "llama3-70b-8192" REASONING_MODEL_NAME = "mixtral-8x7b-32768" REASONING_MODEL_TEMPERATURE = 0 NLP_MODEL_TEMPERATURE = 0 NLP_MODEL_MAX_TOKENS = 5400 VECTOR_MAX_TOKENS = 100 VECTORS_TOKEN_OVERLAP_SIZE = 20 NUMBER_OF_VECTORS_FOR_RAG = 7 # Create the length function def tiktoken_len(text): tokens = tokenizer.encode(text, disallowed_special=()) return len(tokens) def get_vectorstore(): model_name = "BAAI/bge-small-en" model_kwargs = {"device": "cpu"} encode_kwargs = {"normalize_embeddings": True} hf = HuggingFaceEmbeddings( model_name=model_name, model_kwargs=model_kwargs, encode_kwargs=encode_kwargs ) persist_directory = "./chroma_db" # Directory to save the vector store all_splits = [] for file_name in FILE_NAMEs: if file_name.endswith(".pdf"): loader = PyPDFLoader(os.path.join("data", file_name)) data = loader.load()[0].page_content else: with open(os.path.join("data", file_name), "r") as f: data = f.read() text_splitter = RecursiveCharacterTextSplitter( chunk_size=VECTOR_MAX_TOKENS, chunk_overlap=VECTORS_TOKEN_OVERLAP_SIZE, length_function=tiktoken_len, separators=["\n\n\n", "\n\n", "\n", " ", ""] ) all_splits = all_splits + text_splitter.split_text(data) # Check if the vector store already exists if os.path.exists(persist_directory): vectorstore = Chroma(persist_directory=persist_directory, embedding_function=hf) else: vectorstore = Chroma.from_texts( texts=all_splits, embedding=hf, persist_directory=persist_directory ) return vectorstore chat = ChatGroq(temperature=0, groq_api_key=os.getenv("GROQ_API_KEY"), model_name="llama3-8b-8192", streaming=True) rag_memory = ConversationSummaryBufferMemory(llm=chat, max_token_limit=3000) my_vector_store = get_vectorstore()