Kuldip2411 commited on
Commit
6f8702e
·
verified ·
1 Parent(s): 915435b

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +4 -118
app.py CHANGED
@@ -3,125 +3,11 @@ import streamlit as st
3
  import pandas as pd
4
  from datasets import load_from_disk
5
  from transformers import AutoTokenizer, TFAutoModel
6
- from dotenv import load_dotenv
7
 
8
- load_dotenv()
9
-
10
- # Drugs = os.getenv('DRUGS')
11
-
12
- Drugs = ['Amitriptyline', 'Ambien', 'Aripiprazole', 'Actos', 'Aubra',
13
- 'Amphetamine / dextroamphetamine', 'Afrezza',
14
- 'Aluminum chloride hexahydrate', 'Acetaminophen / hydrocodone',
15
- 'Aviane', 'Aldesleukin', 'Acamprosate', 'Azathioprine',
16
- 'Adapalene / benzoyl peroxide',
17
- 'Acetaminophen / butalbital / caffeine', 'Accutane',
18
- 'Ayr Saline Nasal', 'Asenapine', 'Adipex-P', 'Augmentin', 'Apri',
19
- 'Alesse', 'Aspirin / carisoprodol', 'Azelaic acid', 'Azithromycin',
20
- 'Alpha 1-proteinase inhibitor', 'Abilify', 'Amlodipine',
21
- 'Arimidex', 'Acetaminophen / codeine', 'Advair Diskus',
22
- 'Alprazolam', 'Alcaftadine',
23
- 'Acetaminophen / dexbrompheniramine / pseudoephedrine', 'AndroGel',
24
- 'Avinza', 'Ativan', 'Atomoxetine', 'Alphagan P', 'Apremilast',
25
- 'Advair HFA', 'Anastrozole', 'Azor', 'Azelastine / fluticasone',
26
- 'Amerge', 'Avonex Pen', 'Acetaminophen / oxycodone',
27
- 'Abacavir / dolutegravir / lamivudine', 'Adderall', 'Atorvastatin',
28
- 'Aptensio XR',
29
- 'Acetaminophen / dichloralphenazone / isometheptene mucate',
30
- 'Acyclovir', 'Armodafinil', 'Adderall XR',
31
- 'Antipyrine / benzocaine', 'Aczone', 'Amoxicillin / clavulanate',
32
- 'Adalimumab', 'Aranesp', 'Ammonium lactate / halobetasol',
33
- 'Atenolol', 'Avelox', 'Azithromycin Dose Pack', 'Adapalene',
34
- 'Amoxicillin', 'Acetaminophen / aspirin / caffeine', 'Azelastine',
35
- 'Albuterol', 'Amethyst', 'Asacol', 'Aleve', 'Alprostadil',
36
- 'Astelin', 'Atropine / hyoscyamine / phenobarbital / scopolamine','Ascorbic acid', 'Asthmanefrin', 'Allegra-D 12 Hour', 'Amikacin',
37
- 'Arixtra', 'Apokyn', 'AbobotulinumtoxinA', 'Axid', 'Accolate',
38
- 'Adoxa', 'Aspirin / caffeine', 'Aliskiren / hydrochlorothiazide',
39
- 'Afinitor', 'Acetaminophen / phenylephrine', 'Atacand',
40
- 'Allergy DN PE','Bactrim', 'Belviq', 'Blisovi Fe 1 / 20',
41
- 'Benzoyl peroxide / clindamycin', 'BuSpar', 'Bupropion',
42
- 'Bacitracin / neomycin / polymyxin b', 'Brisdelle', 'Beyaz',
43
- 'Buprenorphine / naloxone', 'Benzonatate', 'Bisacodyl', 'Buprenex',
44
- 'Benzoyl peroxide / erythromycin', 'Budeprion SR',
45
- 'Bupropion / naltrexone', 'Belsomra', 'Bevacizumab',
46
- 'Barium sulfate', 'Bismuth subsalicylate', 'Brovana', 'Buspirone',
47
- 'Bronkaid', 'Benzocaine', 'Butrans', 'Bunavail', 'Benicar',
48
- 'Benadryl Allergy', 'Benadryl', 'Biotin', 'Bromfed DM',
49
- 'Breo Ellipta', 'Biaxin', 'Botox', 'Buprenorphine',
50
- 'Benzoic acid / salicylic acid', 'Brimonidine / timolol',
51
- 'Beclomethasone', 'Bydureon', 'Bonine', 'Brilinta', 'Bactrim DS',
52
- 'Brexpiprazole', 'Baclofen', 'Benazepril', 'Biaxin XL', 'Basaglar',
53
- 'Bismuth subcitrate potassium / metronidazole / tetracycline',
54
- 'Belbuca', 'Bromocriptine', 'Budesonide / formoterol',
55
- 'Blisovi 24 Fe', 'Bystolic', 'Banzel', 'Balacet', 'Balsalazide',
56
- 'Benlysta', 'Belimumab', 'Byetta',
57
- 'Bisoprolol / hydrochlorothiazide', 'Butorphanol', 'Boniva',
58
- 'Briviact', 'Brimonidine', 'Biafine', 'Betaseron',
59
- 'Benazepril / hydrochlorothiazide', 'Benzoyl peroxide / sulfur',
60
- 'Bisacodyl / polyethylene glycol 3350 / potassium chloride / sodium bicarbonate / sodium chloride',
61
- 'Balsam peru / castor oil / trypsin',
62
- 'Betamethasone / calcipotriene', 'Budeprion XL', 'Benicar HCT',
63
- 'Bepotastine', 'Bentyl', 'Brompheniramine', 'Benzaclin',
64
- 'Bisoprolol', 'Budesonide', 'Bontril Slow Release', 'Bepreve','Berinert', 'Benzoyl peroxide', 'Belladonna / opium',
65
- 'Butabarbital', 'Bioflavonoids / zinc glycinate', 'Brodalumab',
66
- 'Bicillin L-A', 'Bimatoprost', 'Benztropine', 'Bethanechol',
67
- 'Bupivacaine', 'Bosutinib', 'Bismuth subgallate', 'BenzEFoam',
68
- 'Brivaracetam', 'Blistex','Contrave', 'Cyclafem 1 / 35', 'Copper', 'Chantix',
69
- 'Ciprofloxacin', 'Cyclosporine', 'Clonazepam', 'Ciclopirox',
70
- 'Campral', 'Cryselle', 'Clindamycin', 'Clonidine', 'Celecoxib',
71
- 'Caffeine', 'Clarithromycin', 'Clomiphene', 'Clotrimazole',
72
- 'Celexa', 'Codeine / guaifenesin', 'Cefuroxime', 'Cymbalta',
73
- 'Canagliflozin', 'Citalopram', 'Corticotropin', 'Cefdinir',
74
- 'Carvedilol', 'Chlordiazepoxide', 'CellCept',
75
- 'Cobicistat / elvitegravir / emtricitabine / tenofovir alafenamide',
76
- 'Chateal', 'Cyclobenzaprine', 'Cialis', 'Cholestyramine', 'Cozaar',
77
- 'Catapres', 'Carbidopa / levodopa', 'Carisoprodol',
78
- 'Citric acid / magnesium oxide / sodium picosulfate', 'Cetirizine',
79
- 'Cambia', 'Clindamycin / tretinoin', 'Crestor', 'Copaxone',
80
- 'Chlorpheniramine / hydrocodone / pseudoephedrine',
81
- 'Cobicistat / elvitegravir / emtricitabine / tenofovir',
82
- 'Cogentin', 'Cosentyx', 'Cipro', 'Cytomel', 'Camrese', 'Clomid',
83
- 'Celebrex', 'Colesevelam', 'Clozapine', 'Cutivate', 'Cyred',
84
- 'Concerta', 'Chlorpheniramine / hydrocodone', 'Claravis',
85
- 'Cyanocobalamin', 'Clopidogrel', 'Cyproheptadine',
86
- 'Chlordiazepoxide / clidinium', 'Carbamazepine', 'Crisaborole',
87
- 'Colchicine', 'Ciprofloxacin / dexamethasone', 'Clomipramine',
88
- 'Cabergoline', 'Carac', 'Cephalexin', 'Cariprazine', 'Correctol',
89
- 'Celestone', 'Creon', 'Clobetasol', 'Colazal', 'Chlorzoxazone',
90
- 'Cenestin', 'Casodex', 'Cinryze', 'Claritin-D', 'Chlorhexidine',
91
- 'Complera', 'Cervidil', 'Cefixime', 'Coreg', 'Camila',
92
- 'Clorazepate', 'Cevimeline', 'Cosopt', 'Chondroitin / glucosamine','Citrate of Magnesia', 'Coricidin HBP Cold & Flu', 'Cefditoren',
93
- 'Ceftibuten', 'Cyclessa', 'Cortef', 'Calcium acetate', 'Cyclizine',
94
- 'Coagulation factor ix', 'Colace', 'Carmol 20', 'Calan SR',
95
- 'Cyklokapron', 'Coal tar', 'Cobicistat / darunavir', 'Calamine',
96
- 'CoQ10','Duloxetine', 'Depakote', 'Drospirenone / estradiol',
97
- 'Depo-Provera', 'Desyrel', 'Desvenlafaxine',
98
- 'Drospirenone / ethinyl estradiol', 'Doxylamine / pyridoxine',
99
- 'Demerol', 'Dextromethorphan', 'Diazepam', 'Diphenhydramine',
100
- 'Denosumab', 'Dulaglutide', 'Drysol', 'Divalproex sodium',
101
- 'Doxycycline', 'Desogestrel / ethinyl estradiol', 'Duofilm',
102
- 'Dicyclomine', 'Dexmethylphenidate', 'Diltiazem', 'Dapsone',
103
- 'Dalfampridine', 'Dilantin', 'Dienogest / estradiol', 'Diclofenac',
104
- 'Donnatal', 'Depakote ER', 'Donepezil', 'Dulcolax', 'Dulera',
105
- 'Dapagliflozin', 'Duexis', 'Differin', 'Doxepin', 'Docosanol',
106
- 'Diclegis', 'Desloratadine',
107
- 'Drospirenone / ethinyl estradiol / levomefolate calcium', 'Duac',
108
- 'Deplin', 'Doryx', 'Dilaudid', 'Dimenhydrinate', 'Delsym',
109
- 'Denavir', 'D.H.E. 45', 'Disulfiram', 'Droperidol', 'Dasatinib',
110
- 'Dextrostat', 'Dymista', 'Dextroamphetamine', 'DDAVP Rhinal Tube',
111
- 'Dabigatran', 'Dasabuvir / ombitasvir / paritaprevir / ritonavir',
112
- 'Dextromethorphan / guaifenesin', 'Diflucan', 'Debrox',
113
- 'Diphenhydramine / naproxen', 'Daklinza', 'Daliresp',
114
- 'Dihydroergotamine', 'Dinoprostone', 'Dermal filler', 'Doxylamine',
115
- 'Daytrana', 'Diprivan', 'Dexlansoprazole', 'Dovonex', 'Doral',
116
- 'Desquam-X Wash', 'Dexilant', 'Dofetilide', 'Diovan HCT', 'Detrol',
117
- "Dimetapp Children's Cold & Cough", 'Delatestryl', 'Desipramine',
118
- 'Daclatasvir', 'Depo-Testosterone', 'Dulcolax Laxative',
119
- 'Dexamethasone', 'Dimethyl fumarate', 'Dronabinol', 'Duragesic',
120
- 'Dexedrine', 'Dupixent', 'Dramamine','Daypro', 'Dyazide', 'Deltasone', 'Depo-Medrol',
121
- 'Dapagliflozin / metformin', 'Dilaudid-HP', 'Doxorubicin',
122
- 'Deoxycholic acid',
123
- 'Dextromethorphan / phenylephrine / pyrilamine',
124
- 'Diphenhydramine / ibuprofen', 'Divigel', 'Dermatop']
125
 
126
  model_ckpt = "sentence-transformers/multi-qa-mpnet-base-dot-v1"
127
  tokenizer = AutoTokenizer.from_pretrained(model_ckpt)
 
3
  import pandas as pd
4
  from datasets import load_from_disk
5
  from transformers import AutoTokenizer, TFAutoModel
6
+ from constant import DRGUS_STR_LIST
7
 
8
+ if DRGUS_STR_LIST:
9
+ Drugs = DRGUS_STR_LIST.split(',')
10
+ Drugs = [drug.strip() for drug in Drugs]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
11
 
12
  model_ckpt = "sentence-transformers/multi-qa-mpnet-base-dot-v1"
13
  tokenizer = AutoTokenizer.from_pretrained(model_ckpt)