simran0608 commited on
Commit
e554238
·
verified ·
1 Parent(s): 530a851

Delete src

Browse files
src/best.pt DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:6a2590ddc636558a6cf887857adc3cfda5b2c8501f378124a1a4cfb239004c4e
3
- size 40507685
 
 
 
 
src/drowsiness-detected.mp3 DELETED
Binary file (64.3 kB)
 
src/drowsiness_detection.py DELETED
@@ -1,248 +0,0 @@
1
- # PREP DEPENDENCIES
2
- from scipy.spatial import distance as dist
3
- from imutils import face_utils
4
- from threading import Thread
5
- import numpy as np
6
- import cv2 as cv
7
- import imutils
8
- import dlib
9
- import pygame # Used for playing alarm sounds cross-platform
10
- import argparse
11
- import os
12
-
13
- # --- INITIALIZE MODELS AND CONSTANTS ---
14
-
15
- # Haar cascade classifier for face detection
16
- haar_cascade_face_detector = "haarcascade_frontalface_default.xml"
17
- face_detector = cv.CascadeClassifier(haar_cascade_face_detector)
18
-
19
- # Dlib facial landmark detector
20
- dlib_facial_landmark_predictor = "shape_predictor_68_face_landmarks.dat"
21
- landmark_predictor = dlib.shape_predictor(dlib_facial_landmark_predictor)
22
-
23
- # Important Variables
24
- font = cv.FONT_HERSHEY_SIMPLEX
25
- # --- INITIALIZE MODELS AND CONSTANTS ---
26
- # Eye Drowsiness Detection
27
- EYE_ASPECT_RATIO_THRESHOLD = 0.25
28
- EYE_CLOSED_THRESHOLD = 20
29
- EYE_THRESH_COUNTER = 0
30
- DROWSY_COUNTER = 0
31
- drowsy_alert = False
32
-
33
- # Mouth Yawn Detection
34
- MOUTH_ASPECT_RATIO_THRESHOLD = 0.5
35
- MOUTH_OPEN_THRESHOLD = 15
36
- YAWN_THRESH_COUNTER = 0
37
- YAWN_COUNTER = 0
38
- yawn_alert = False
39
-
40
- # NEW: Head Not Visible Detection
41
- FACE_LOST_THRESHOLD = 25 # Conseq. frames face must be lost to trigger alert
42
- FACE_LOST_COUNTER = 0
43
- HEAD_DOWN_COUNTER = 0 # Renaming for clarity
44
- head_down_alert = False
45
-
46
- # --- AUDIO SETUP (using Pygame) ---
47
- pygame.mixer.init()
48
- drowsiness_sound = pygame.mixer.Sound("drowsiness-detected.mp3")
49
- yawn_sound = pygame.mixer.Sound("yawning-detected.mp3")
50
- # head_down_sound = pygame.mixer.Sound("dependencies/audio/head-down-detected.mp3")
51
-
52
- # --- CORE FUNCTIONS ---
53
- def play_alarm(sound_to_play):
54
- if not pygame.mixer.get_busy():
55
- sound_to_play.play()
56
-
57
- def generate_alert(final_eye_ratio, final_mouth_ratio):
58
- global EYE_THRESH_COUNTER, YAWN_THRESH_COUNTER
59
- global drowsy_alert, yawn_alert
60
- global DROWSY_COUNTER, YAWN_COUNTER
61
-
62
- # Drowsiness check
63
- if final_eye_ratio < EYE_ASPECT_RATIO_THRESHOLD:
64
- EYE_THRESH_COUNTER += 1
65
- if EYE_THRESH_COUNTER >= EYE_CLOSED_THRESHOLD:
66
- if not drowsy_alert:
67
- DROWSY_COUNTER += 1
68
- drowsy_alert = True
69
- Thread(target=play_alarm, args=(drowsiness_sound,)).start()
70
- else:
71
- EYE_THRESH_COUNTER = 0
72
- drowsy_alert = False
73
-
74
- # Yawn check
75
- if final_mouth_ratio > MOUTH_ASPECT_RATIO_THRESHOLD:
76
- YAWN_THRESH_COUNTER += 1
77
- if YAWN_THRESH_COUNTER >= MOUTH_OPEN_THRESHOLD:
78
- if not yawn_alert:
79
- YAWN_COUNTER += 1
80
- yawn_alert = True
81
- Thread(target=play_alarm, args=(yawn_sound,)).start()
82
- else:
83
- YAWN_THRESH_COUNTER = 0
84
- yawn_alert = False
85
-
86
- def detect_facial_landmarks(x, y, w, h, gray_frame):
87
- face = dlib.rectangle(int(x), int(y), int(x + w), int(y + h))
88
- face_landmarks = landmark_predictor(gray_frame, face)
89
- face_landmarks = face_utils.shape_to_np(face_landmarks)
90
- return face_landmarks
91
-
92
- def eye_aspect_ratio(eye):
93
- A = dist.euclidean(eye[1], eye[5])
94
- B = dist.euclidean(eye[2], eye[4])
95
- C = dist.euclidean(eye[0], eye[3])
96
- ear = (A + B) / (2.0 * C)
97
- return ear
98
-
99
- def final_eye_aspect_ratio(shape):
100
- (lStart, lEnd) = face_utils.FACIAL_LANDMARKS_IDXS["left_eye"]
101
- (rStart, rEnd) = face_utils.FACIAL_LANDMARKS_IDXS["right_eye"]
102
- left_eye = shape[lStart:lEnd]
103
- right_eye = shape[rStart:rEnd]
104
- left_ear = eye_aspect_ratio(left_eye)
105
- right_ear = eye_aspect_ratio(right_eye)
106
- final_ear = (left_ear + right_ear) / 2.0
107
- return final_ear, left_eye, right_eye
108
-
109
- def mouth_aspect_ratio(mouth):
110
- A = dist.euclidean(mouth[2], mouth[10])
111
- B = dist.euclidean(mouth[4], mouth[8])
112
- C = dist.euclidean(mouth[0], mouth[6])
113
- mar = (A + B) / (2.0 * C)
114
- return mar
115
-
116
- def final_mouth_aspect_ratio(shape):
117
- (mStart, mEnd) = face_utils.FACIAL_LANDMARKS_IDXS["mouth"]
118
- mouth = shape[mStart:mEnd]
119
- return mouth_aspect_ratio(mouth), mouth
120
-
121
- def head_pose_ratio(shape):
122
- nose_tip = shape[30]
123
- chin_tip = shape[8]
124
- left_face_corner = shape[0]
125
- right_face_corner = shape[16]
126
- nose_to_chin_dist = dist.euclidean(nose_tip, chin_tip)
127
- face_width = dist.euclidean(left_face_corner, right_face_corner)
128
- if face_width == 0:
129
- return 0.0
130
- hpr = nose_to_chin_dist / face_width
131
- return hpr
132
-
133
- def reset_counters():
134
- global EYE_THRESH_COUNTER, YAWN_THRESH_COUNTER, FACE_LOST_COUNTER
135
- global DROWSY_COUNTER, YAWN_COUNTER, HEAD_DOWN_COUNTER
136
- global drowsy_alert, yawn_alert, head_down_alert
137
- EYE_THRESH_COUNTER, YAWN_THRESH_COUNTER, FACE_LOST_COUNTER = 0, 0, 0
138
- DROWSY_COUNTER, YAWN_COUNTER, HEAD_DOWN_COUNTER = 0, 0, 0
139
- drowsy_alert, yawn_alert, head_down_alert = False, False, False
140
-
141
- def process_frame(frame):
142
- global FACE_LOST_COUNTER, head_down_alert, HEAD_DOWN_COUNTER
143
- frame = imutils.resize(frame, width=640)
144
- gray_frame = cv.cvtColor(frame, cv.COLOR_BGR2GRAY)
145
- faces = face_detector.detectMultiScale(gray_frame, scaleFactor=1.1, minNeighbors=5, minSize=(30, 30), flags=cv.CASCADE_SCALE_IMAGE)
146
- if len(faces) > 0:
147
- FACE_LOST_COUNTER = 0
148
- head_down_alert = False
149
- (x, y, w, h) = faces[0]
150
- face_landmarks = detect_facial_landmarks(x, y, w, h, gray_frame)
151
- final_ear, left_eye, right_eye = final_eye_aspect_ratio(face_landmarks)
152
- final_mar, mouth = final_mouth_aspect_ratio(face_landmarks)
153
- # left_eye_hull, right_eye_hull, mouth_hull = cv.convexHull(left_eye), cv.convexHull(right_eye), cv.convexHull(mouth)
154
- # cv.drawContours(frame, [left_eye_hull], -1, (0, 255, 0), 1)
155
- # cv.drawContours(frame, [right_eye_hull], -1, (0, 255, 0), 1)
156
- # cv.drawContours(frame, [mouth_hull], -1, (0, 255, 0), 1)
157
- generate_alert(final_ear, final_mar)
158
- cv.putText(frame, f"EAR: {final_ear:.2f}", (10, 30), font, 0.7, (0, 0, 255), 2)
159
- cv.putText(frame, f"MAR: {final_mar:.2f}", (10, 60), font, 0.7, (0, 0, 255), 2)
160
- else:
161
- FACE_LOST_COUNTER += 1
162
- if FACE_LOST_COUNTER >= FACE_LOST_THRESHOLD and not head_down_alert:
163
- HEAD_DOWN_COUNTER += 1
164
- head_down_alert = True
165
- cv.putText(frame, f"Drowsy: {DROWSY_COUNTER}", (480, 30), font, 0.7, (255, 255, 0), 2)
166
- cv.putText(frame, f"Yawn: {YAWN_COUNTER}", (480, 60), font, 0.7, (255, 255, 0), 2)
167
- cv.putText(frame, f"Head Down: {HEAD_DOWN_COUNTER}", (480, 90), font, 0.7, (255, 255, 0), 2)
168
- if drowsy_alert: cv.putText(frame, "DROWSINESS ALERT!", (150, 30), font, 0.9, (0, 0, 255), 2)
169
- if yawn_alert: cv.putText(frame, "YAWN ALERT!", (200, 60), font, 0.9, (0, 0, 255), 2)
170
- if head_down_alert: cv.putText(frame, "HEAD NOT VISIBLE!", (180, 90), font, 0.9, (0, 0, 255), 2)
171
- return frame
172
-
173
- def process_video(input_path, output_path=None):
174
- reset_counters()
175
- video_stream = cv.VideoCapture(input_path)
176
- if not video_stream.isOpened():
177
- print(f"Error: Could not open video file {input_path}")
178
- return False
179
-
180
- fps = int(video_stream.get(cv.CAP_PROP_FPS))
181
- width = int(video_stream.get(cv.CAP_PROP_FRAME_WIDTH))
182
- height = int(video_stream.get(cv.CAP_PROP_FRAME_HEIGHT))
183
-
184
- print(f"Processing video: {input_path}")
185
- print(f"Original Res: {width}x{height}, FPS: {fps}")
186
-
187
- video_writer = None
188
- if output_path:
189
- fourcc = cv.VideoWriter_fourcc(*'mp4v')
190
- # --- FIX: Calculate correct output dimensions to prevent corruption ---
191
- # The process_frame function resizes frames to a fixed width of 640.
192
- output_width = 640
193
- # Maintain aspect ratio
194
- output_height = int(height * (output_width / float(width)))
195
- output_dims = (output_width, output_height)
196
- video_writer = cv.VideoWriter(output_path, fourcc, fps, output_dims)
197
- print(f"Outputting video with Res: {output_dims[0]}x{output_dims[1]}")
198
-
199
- while True:
200
- ret, frame = video_stream.read()
201
- if not ret: break
202
-
203
- processed_frame = process_frame(frame)
204
- if video_writer: video_writer.write(processed_frame)
205
-
206
- video_stream.release()
207
- if video_writer: video_writer.release()
208
-
209
- print("Video processing complete!")
210
- print(f"Final Stats - Drowsy: {DROWSY_COUNTER}, Yawn: {YAWN_COUNTER}, Head Down: {HEAD_DOWN_COUNTER}")
211
- return True
212
-
213
- def run_webcam():
214
- reset_counters()
215
- video_stream = cv.VideoCapture(0)
216
- if not video_stream.isOpened():
217
- print("Error: Could not open webcam")
218
- return False
219
- while True:
220
- ret, frame = video_stream.read()
221
- if not ret:
222
- print("Failed to grab frame")
223
- break
224
- processed_frame = process_frame(frame)
225
- cv.imshow("Live Drowsiness and Yawn Detection", processed_frame)
226
- if cv.waitKey(1) & 0xFF == ord('q'): break
227
- video_stream.release()
228
- cv.destroyAllWindows()
229
- return True
230
-
231
- # --- MAIN EXECUTION LOOP ---
232
- if __name__ == "__main__":
233
- parser = argparse.ArgumentParser(description='Drowsiness Detection System')
234
- parser.add_argument('--mode', choices=['webcam', 'video'], default='webcam', help='Mode of operation')
235
- parser.add_argument('--input', type=str, help='Input video file path for video mode')
236
- parser.add_argument('--output', type=str, help='Output video file path for video mode')
237
- args = parser.parse_args()
238
-
239
- if args.mode == 'webcam':
240
- print("Starting webcam detection...")
241
- run_webcam()
242
- elif args.mode == 'video':
243
- if not args.input:
244
- print("Error: --input argument is required for video mode.")
245
- elif not os.path.exists(args.input):
246
- print(f"Error: Input file not found at {args.input}")
247
- else:
248
- process_video(args.input, args.output)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
src/haarcascade_frontalface_default.xml DELETED
The diff for this file is too large to render. See raw diff
 
src/shape_predictor_68_face_landmarks.dat DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:fbdc2cb80eb9aa7a758672cbfdda32ba6300efe9b6e6c7a299ff7e736b11b92f
3
- size 99693937
 
 
 
 
src/streamlit_app.py DELETED
@@ -1,318 +0,0 @@
1
- import asyncio
2
- import sys
3
-
4
- if sys.platform.startswith('linux') and sys.version_info >= (3, 8):
5
- try:
6
- asyncio.set_event_loop_policy(asyncio.DefaultEventLoopPolicy())
7
- except Exception:
8
- pass
9
- import streamlit as st
10
- from PIL import Image
11
- import numpy as np
12
- import subprocess
13
- import time
14
- import tempfile
15
- import os
16
- from ultralytics import YOLO
17
- import cv2 as cv
18
- import pandas as pd
19
-
20
- model_path="src/best.pt"
21
-
22
- # --- Page Configuration ---
23
- st.set_page_config(
24
- page_title="Driver Distraction System",
25
- page_icon="🚗",
26
- layout="wide",
27
- initial_sidebar_state="expanded",
28
- )
29
-
30
- # --- Sidebar ---
31
- st.sidebar.title("🚗 Driver Distraction System")
32
- st.sidebar.write("Choose an option below:")
33
-
34
- # Sidebar navigation
35
- page = st.sidebar.radio("Select Feature", [
36
- "Distraction System",
37
- "Real-time Drowsiness Detection",
38
- "Video Drowsiness Detection"
39
- ])
40
-
41
- # --- Class Labels (for YOLO model) ---
42
- class_names = ['drinking', 'hair and makeup', 'operating the radio', 'reaching behind',
43
- 'safe driving', 'talking on the phone', 'talking to passenger', 'texting']
44
-
45
- # Sidebar Class Name Display
46
- st.sidebar.subheader("Class Names")
47
- for idx, class_name in enumerate(class_names):
48
- st.sidebar.write(f"{idx}: {class_name}")
49
-
50
- # --- Feature: YOLO Distraction Detection ---
51
- if page == "Distraction System":
52
- st.title("Driver Distraction System")
53
- st.write("Upload an image or video to detect distractions using YOLO model.")
54
-
55
- # File type selection
56
- file_type = st.radio("Select file type:", ["Image", "Video"])
57
-
58
- if file_type == "Image":
59
- uploaded_file = st.file_uploader("Upload Image", type=["jpg", "jpeg", "png"])
60
- if uploaded_file is not None:
61
- image = Image.open(uploaded_file).convert('RGB')
62
- image_np = np.array(image)
63
- col1, col2 = st.columns([1, 1])
64
- with col1:
65
- st.subheader("Uploaded Image")
66
- st.image(image, caption="Original Image", use_container_width=True)
67
- with col2:
68
- st.subheader("Detection Results")
69
- model = YOLO(model_path)
70
- start_time = time.time()
71
- results = model(image_np)
72
- end_time = time.time()
73
- prediction_time = end_time - start_time
74
- result = results[0]
75
- if len(result.boxes) > 0:
76
- boxes = result.boxes
77
- confidences = boxes.conf.cpu().numpy()
78
- classes = boxes.cls.cpu().numpy()
79
- class_names_dict = result.names
80
- max_conf_idx = confidences.argmax()
81
- predicted_class = class_names_dict[int(classes[max_conf_idx])]
82
- confidence_score = confidences[max_conf_idx]
83
- st.markdown(f"### Predicted Class: **{predicted_class}**")
84
- st.markdown(f"### Confidence Score: **{confidence_score:.4f}** ({confidence_score*100:.1f}%)")
85
- st.markdown(f"Inference Time: {prediction_time:.2f} seconds")
86
- else:
87
- st.warning("No distractions detected.")
88
-
89
- else: # Video processing
90
- uploaded_video = st.file_uploader("Upload Video", type=["mp4", "avi", "mov", "mkv", "webm"])
91
-
92
- if uploaded_video is not None:
93
- tfile = tempfile.NamedTemporaryFile(delete=False, suffix=".mp4")
94
- tfile.write(uploaded_video.read())
95
- temp_input_path = tfile.name
96
- temp_output_path = tempfile.mktemp(suffix="_distraction_detected.mp4")
97
-
98
- st.subheader("Video Information")
99
- cap = cv.VideoCapture(temp_input_path)
100
- fps = cap.get(cv.CAP_PROP_FPS)
101
- width = int(cap.get(cv.CAP_PROP_FRAME_WIDTH))
102
- height = int(cap.get(cv.CAP_PROP_FRAME_HEIGHT))
103
- total_frames = int(cap.get(cv.CAP_PROP_FRAME_COUNT))
104
- duration = total_frames / fps if fps > 0 else 0
105
- cap.release()
106
-
107
- col1, col2 = st.columns(2)
108
- with col1:
109
- st.metric("Duration", f"{duration:.2f} seconds")
110
- st.metric("Original FPS", f"{fps:.2f}")
111
- with col2:
112
- st.metric("Resolution", f"{width}x{height}")
113
- st.metric("Total Frames", total_frames)
114
-
115
- st.subheader("Original Video Preview")
116
- st.video(uploaded_video)
117
-
118
- if st.button("Process Video for Distraction Detection"):
119
- TARGET_PROCESSING_FPS = 10
120
- # --- NEW: Hyperparameter for the temporal smoothing logic ---
121
- PERSISTENCE_CONFIDENCE_THRESHOLD = 0.40 # Stick with old class if found with >= 40% confidence
122
-
123
- st.info(f"🚀 For faster results, video will be processed at ~{TARGET_PROCESSING_FPS} FPS.")
124
- st.info(f"🧠 Applying temporal smoothing to reduce status flickering (Persistence Threshold: {PERSISTENCE_CONFIDENCE_THRESHOLD*100:.0f}%).")
125
-
126
- progress_bar = st.progress(0, text="Starting video processing...")
127
-
128
- with st.spinner(f"Processing video... This may take a while."):
129
- model = YOLO(model_path)
130
- cap = cv.VideoCapture(temp_input_path)
131
-
132
- fourcc = cv.VideoWriter_fourcc(*'mp4v')
133
- out = cv.VideoWriter(temp_output_path, fourcc, fps, (width, height))
134
-
135
- frame_skip_interval = max(1, round(fps / TARGET_PROCESSING_FPS))
136
-
137
- frame_count = 0
138
- last_best_box_coords = None
139
- last_best_box_label = ""
140
- last_status_text = "Status: Initializing..."
141
- last_status_color = (128, 128, 128)
142
- # --- NEW: State variable to store the last confirmed class ---
143
- last_confirmed_class_name = 'safe driving'
144
-
145
- while cap.isOpened():
146
- ret, frame = cap.read()
147
- if not ret:
148
- break
149
-
150
- frame_count += 1
151
- progress = int((frame_count / total_frames) * 100) if total_frames > 0 else 0
152
- progress_bar.progress(progress, text=f"Analyzing frame {frame_count}/{total_frames}")
153
-
154
- annotated_frame = frame.copy()
155
-
156
- if frame_count % frame_skip_interval == 0:
157
- results = model(annotated_frame)
158
- result = results[0]
159
-
160
- last_best_box_coords = None # Reset box for this processing cycle
161
-
162
- if len(result.boxes) > 0:
163
- boxes = result.boxes
164
- class_names_dict = result.names
165
- confidences = boxes.conf.cpu().numpy()
166
- classes = boxes.cls.cpu().numpy()
167
-
168
- # --- NEW STABILITY LOGIC ---
169
- final_box_to_use = None
170
-
171
- # 1. Check if the last known class exists with reasonable confidence
172
- for i in range(len(boxes)):
173
- current_class_name = class_names_dict[int(classes[i])]
174
- if current_class_name == last_confirmed_class_name and confidences[i] >= PERSISTENCE_CONFIDENCE_THRESHOLD:
175
- final_box_to_use = boxes[i]
176
- break
177
-
178
- # 2. If not, fall back to the highest confidence detection in the current frame
179
- if final_box_to_use is None:
180
- max_conf_idx = confidences.argmax()
181
- final_box_to_use = boxes[max_conf_idx]
182
- # --- END OF NEW LOGIC ---
183
-
184
- # Now, process the determined "final_box_to_use"
185
- x1, y1, x2, y2 = final_box_to_use.xyxy[0].cpu().numpy()
186
- confidence = final_box_to_use.conf[0].cpu().numpy()
187
- class_id = int(final_box_to_use.cls[0].cpu().numpy())
188
- class_name = class_names_dict[class_id]
189
-
190
- # Update the state for the next frames
191
- last_confirmed_class_name = class_name
192
- last_best_box_coords = (int(x1), int(y1), int(x2), int(y2))
193
- last_best_box_label = f"{class_name}: {confidence:.2f}"
194
-
195
- if class_name != 'safe driving':
196
- last_status_text = f"Status: {class_name.replace('_', ' ').title()}"
197
- last_status_color = (0, 0, 255)
198
- else:
199
- last_status_text = "Status: Safe Driving"
200
- last_status_color = (0, 128, 0)
201
- else:
202
- # No detections, reset to safe driving
203
- last_confirmed_class_name = 'safe driving'
204
- last_status_text = "Status: Safe Driving"
205
- last_status_color = (0, 128, 0)
206
-
207
- # Draw annotations on EVERY frame using the last known data
208
- if last_best_box_coords:
209
- cv.rectangle(annotated_frame, (last_best_box_coords[0], last_best_box_coords[1]),
210
- (last_best_box_coords[2], last_best_box_coords[3]), (0, 255, 0), 2)
211
- cv.putText(annotated_frame, last_best_box_label,
212
- (last_best_box_coords[0], last_best_box_coords[1] - 10),
213
- cv.FONT_HERSHEY_SIMPLEX, 0.9, (0, 255, 0), 2)
214
-
215
- # Draw status text
216
- font_scale, font_thickness = 1.0, 2
217
- (text_w, text_h), _ = cv.getTextSize(last_status_text, cv.FONT_HERSHEY_SIMPLEX, font_scale, font_thickness)
218
- padding = 10
219
- rect_start = (padding, padding)
220
- rect_end = (padding + text_w + padding, padding + text_h + padding)
221
- cv.rectangle(annotated_frame, rect_start, rect_end, last_status_color, -1)
222
- text_pos = (padding + 5, padding + text_h + 5)
223
- cv.putText(annotated_frame, last_status_text, text_pos, cv.FONT_HERSHEY_SIMPLEX, font_scale, (255, 255, 255), font_thickness)
224
-
225
- out.write(annotated_frame)
226
-
227
- cap.release()
228
- out.release()
229
- progress_bar.progress(100, text="Video processing completed!")
230
-
231
- st.success("Video processed successfully!")
232
-
233
- if os.path.exists(temp_output_path):
234
- with open(temp_output_path, "rb") as file:
235
- video_bytes = file.read()
236
-
237
- st.download_button(
238
- label="📥 Download Processed Video",
239
- data=video_bytes,
240
- file_name=f"distraction_detected_{uploaded_video.name}",
241
- mime="video/mp4",
242
- key="download_distraction_video"
243
- )
244
-
245
- st.subheader("Sample Frame from Processed Video")
246
- cap_out = cv.VideoCapture(temp_output_path)
247
- ret, frame = cap_out.read()
248
- if ret:
249
- frame_rgb = cv.cvtColor(frame, cv.COLOR_BGR2RGB)
250
- st.image(frame_rgb, caption="Sample frame with distraction detection", use_container_width=True)
251
- cap_out.release()
252
-
253
- try:
254
- os.unlink(temp_input_path)
255
- if os.path.exists(temp_output_path): os.unlink(temp_output_path)
256
- except Exception as e:
257
- st.warning(f"Failed to clean up temporary files: {e}")
258
-
259
- # --- Feature: Real-time Drowsiness Detection ---
260
- elif page == "Real-time Drowsiness Detection":
261
- st.title("🧠 Real-time Drowsiness Detection")
262
- st.write("This will open your webcam and run the detection script.")
263
- if st.button("Start Drowsiness Detection"):
264
- with st.spinner("Launching webcam..."):
265
- subprocess.Popen(["python3", "drowsiness_detection.py", "--mode", "webcam"])
266
- st.success("Drowsiness detection started in a separate window. Press 'q' in that window to quit.")
267
-
268
- # --- Feature: Video Drowsiness Detection ---
269
- elif page == "Video Drowsiness Detection":
270
- st.title("📹 Video Drowsiness Detection")
271
- st.write("Upload a video file to detect drowsiness and download the processed video.")
272
- uploaded_video = st.file_uploader("Upload Video", type=["mp4", "avi", "mov", "mkv", "webm"])
273
- if uploaded_video is not None:
274
- tfile = tempfile.NamedTemporaryFile(delete=False, suffix=".mp4")
275
- tfile.write(uploaded_video.read())
276
- temp_input_path = tfile.name
277
- temp_output_path = tempfile.mktemp(suffix="_processed.mp4")
278
- st.subheader("Original Video Preview")
279
- st.video(uploaded_video)
280
- if st.button("Process Video for Drowsiness Detection"):
281
- progress_bar = st.progress(0, text="Preparing to process video...")
282
- with st.spinner("Processing video... This may take a while."):
283
- process = subprocess.Popen([
284
- "python3", "drowsiness_detection.py",
285
- "--mode", "video",
286
- "--input", temp_input_path,
287
- "--output", temp_output_path
288
- ], stdout=subprocess.PIPE, stderr=subprocess.PIPE, text=True)
289
- stdout, stderr = process.communicate()
290
- if process.returncode == 0:
291
- progress_bar.progress(100, text="Video processing completed!")
292
- if os.path.exists(temp_output_path):
293
- st.success("Video processed successfully!")
294
- if stdout: st.code(stdout)
295
- with open(temp_output_path, "rb") as file: video_bytes = file.read()
296
- st.download_button(
297
- label="📥 Download Processed Video",
298
- data=video_bytes,
299
- file_name=f"drowsiness_detected_{uploaded_video.name}",
300
- mime="video/mp4",
301
- key="download_processed_video"
302
- )
303
- st.subheader("Sample Frame from Processed Video")
304
- cap = cv.VideoCapture(temp_output_path)
305
- ret, frame = cap.read()
306
- if ret: st.image(cv.cvtColor(frame, cv.COLOR_BGR2RGB), caption="Sample frame with drowsiness detection", use_container_width=True)
307
- cap.release()
308
- else:
309
- st.error("Error: Processed video file not found.")
310
- if stderr: st.code(stderr)
311
- else:
312
- st.error("An error occurred during video processing.")
313
- if stderr: st.code(stderr)
314
- try:
315
- if os.path.exists(temp_input_path): os.unlink(temp_input_path)
316
- if os.path.exists(temp_output_path): os.unlink(temp_output_path)
317
- except Exception as e:
318
- st.warning(f"Failed to clean up temporary files: {e}")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
src/video_processor.py DELETED
@@ -1,142 +0,0 @@
1
- """
2
- Video Processing Utility for Drowsiness Detection
3
- This script provides a more robust video processing interface
4
- """
5
-
6
- import cv2 as cv
7
- import os
8
- import json
9
- from datetime import datetime
10
- import argparse
11
-
12
- def get_video_info(video_path):
13
- """Get detailed video information"""
14
- cap = cv.VideoCapture(video_path)
15
-
16
- if not cap.isOpened():
17
- return None
18
-
19
- info = {
20
- 'fps': cap.get(cv.CAP_PROP_FPS),
21
- 'width': int(cap.get(cv.CAP_PROP_FRAME_WIDTH)),
22
- 'height': int(cap.get(cv.CAP_PROP_FRAME_HEIGHT)),
23
- 'total_frames': int(cap.get(cv.CAP_PROP_FRAME_COUNT)),
24
- 'duration': cap.get(cv.CAP_PROP_FRAME_COUNT) / cap.get(cv.CAP_PROP_FPS) if cap.get(cv.CAP_PROP_FPS) > 0 else 0,
25
- 'codec': int(cap.get(cv.CAP_PROP_FOURCC)),
26
- 'file_size': os.path.getsize(video_path)
27
- }
28
-
29
- cap.release()
30
- return info
31
-
32
- def create_processing_report(input_path, output_path, stats):
33
- """Create a JSON report of the processing results"""
34
- report = {
35
- 'timestamp': datetime.now().isoformat(),
36
- 'input_file': input_path,
37
- 'output_file': output_path,
38
- 'video_info': get_video_info(input_path),
39
- 'detection_stats': stats,
40
- 'processing_info': {
41
- 'software': 'Drowsiness Detection System',
42
- 'version': '1.0'
43
- }
44
- }
45
-
46
- report_path = output_path.replace('.mp4', '_report.json')
47
- with open(report_path, 'w') as f:
48
- json.dump(report, f, indent=2)
49
-
50
- return report_path
51
-
52
- def process_video_with_progress(input_path, output_path, progress_callback=None):
53
- """
54
- Process video with progress callback
55
- progress_callback: function that takes (current_frame, total_frames)
56
- """
57
- # Import the drowsiness detection functions
58
- from drowsiness_detection import process_frame, reset_counters
59
- from drowsiness_detection import DROWSY_COUNTER, YAWN_COUNTER, HEAD_DOWN_COUNTER
60
-
61
- reset_counters()
62
-
63
- # Open video file
64
- video_stream = cv.VideoCapture(input_path)
65
-
66
- if not video_stream.isOpened():
67
- raise ValueError(f"Could not open video file {input_path}")
68
-
69
- # Get video properties
70
- fps = int(video_stream.get(cv.CAP_PROP_FPS))
71
- width = int(video_stream.get(cv.CAP_PROP_FRAME_WIDTH))
72
- height = int(video_stream.get(cv.CAP_PROP_FRAME_HEIGHT))
73
- total_frames = int(video_stream.get(cv.CAP_PROP_FRAME_COUNT))
74
-
75
- # Setup video writer
76
- fourcc = cv.VideoWriter_fourcc(*'mp4v')
77
- video_writer = cv.VideoWriter(output_path, fourcc, fps, (640, 480))
78
-
79
- frame_count = 0
80
-
81
- try:
82
- while True:
83
- ret, frame = video_stream.read()
84
- if not ret:
85
- break
86
-
87
- frame_count += 1
88
-
89
- # Process frame
90
- processed_frame = process_frame(frame)
91
-
92
- # Write frame to output video
93
- video_writer.write(processed_frame)
94
-
95
- # Call progress callback if provided
96
- if progress_callback:
97
- progress_callback(frame_count, total_frames)
98
-
99
- # Get final stats
100
- stats = {
101
- 'total_frames': frame_count,
102
- 'drowsy_events': DROWSY_COUNTER,
103
- 'yawn_events': YAWN_COUNTER,
104
- 'head_down_events': HEAD_DOWN_COUNTER
105
- }
106
-
107
- return stats
108
-
109
- finally:
110
- video_stream.release()
111
- video_writer.release()
112
-
113
- def main():
114
- parser = argparse.ArgumentParser(description='Video Processing Utility for Drowsiness Detection')
115
- parser.add_argument('--input', '-i', required=True, help='Input video file path')
116
- parser.add_argument('--output', '-o', help='Output video file path (optional)')
117
- parser.add_argument('--report', '-r', action='store_true', help='Generate processing report')
118
- parser.add_argument('--info', action='store_true', help='Show video information only')
119
-
120
- args = parser.parse_args()
121
-
122
- if not os.path.exists(args.input):
123
- print(f"Error: Input file {args.input} does not exist")
124
- return
125
-
126
- # Show video info
127
- if args.info:
128
- info = get_video_info(args.input)
129
- if info:
130
- print(f"Video Information for: {args.input}")
131
- print(f"Resolution: {info['width']}x{info['height']}")
132
- print(f"FPS: {info['fps']:.2f}")
133
- print(f"Duration: {info['duration']:.2f} seconds")
134
- print(f"Total Frames: {info['total_frames']}")
135
- print(f"File Size: {info['file_size'] / (1024*1024):.2f} MB")
136
- else:
137
- print("Error: Could not read video file")
138
- return
139
-
140
- # Generate output path if not provided
141
- if not args.output:
142
- base_name
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
src/yawning-detected.mp3 DELETED
Binary file (64.3 kB)