|
import asyncio |
|
import sys |
|
|
|
if sys.platform.startswith('linux') and sys.version_info >= (3, 8): |
|
try: |
|
asyncio.set_event_loop_policy(asyncio.DefaultEventLoopPolicy()) |
|
except Exception: |
|
pass |
|
import streamlit as st |
|
from PIL import Image |
|
import numpy as np |
|
import subprocess |
|
import time |
|
import tempfile |
|
import os |
|
from ultralytics import YOLO |
|
import cv2 as cv |
|
import pandas as pd |
|
|
|
model_path="best.pt" |
|
|
|
|
|
st.set_page_config( |
|
page_title="Driver Distraction System", |
|
page_icon="π", |
|
layout="wide", |
|
initial_sidebar_state="expanded", |
|
) |
|
|
|
|
|
st.sidebar.title("π Driver Distraction System") |
|
st.sidebar.write("Choose an option below:") |
|
|
|
|
|
page = st.sidebar.radio("Select Feature", [ |
|
"Distraction System", |
|
"Real-time Drowsiness Detection", |
|
"Video Drowsiness Detection" |
|
]) |
|
|
|
|
|
class_names = ['drinking', 'hair and makeup', 'operating the radio', 'reaching behind', |
|
'safe driving', 'talking on the phone', 'talking to passenger', 'texting'] |
|
|
|
|
|
st.sidebar.subheader("Class Names") |
|
for idx, class_name in enumerate(class_names): |
|
st.sidebar.write(f"{idx}: {class_name}") |
|
|
|
|
|
if page == "Distraction System": |
|
st.title("Driver Distraction System") |
|
st.write("Upload an image or video to detect distractions using YOLO model.") |
|
|
|
|
|
file_type = st.radio("Select file type:", ["Image", "Video"]) |
|
|
|
if file_type == "Image": |
|
uploaded_file = st.file_uploader("Upload Image", type=["jpg", "jpeg", "png"]) |
|
if uploaded_file is not None: |
|
image = Image.open(uploaded_file).convert('RGB') |
|
image_np = np.array(image) |
|
col1, col2 = st.columns([1, 1]) |
|
with col1: |
|
st.subheader("Uploaded Image") |
|
st.image(image, caption="Original Image", use_container_width=True) |
|
with col2: |
|
st.subheader("Detection Results") |
|
model = YOLO(model_path) |
|
start_time = time.time() |
|
results = model(image_np) |
|
end_time = time.time() |
|
prediction_time = end_time - start_time |
|
result = results[0] |
|
if len(result.boxes) > 0: |
|
boxes = result.boxes |
|
confidences = boxes.conf.cpu().numpy() |
|
classes = boxes.cls.cpu().numpy() |
|
class_names_dict = result.names |
|
max_conf_idx = confidences.argmax() |
|
predicted_class = class_names_dict[int(classes[max_conf_idx])] |
|
confidence_score = confidences[max_conf_idx] |
|
st.markdown(f"### Predicted Class: **{predicted_class}**") |
|
st.markdown(f"### Confidence Score: **{confidence_score:.4f}** ({confidence_score*100:.1f}%)") |
|
st.markdown(f"Inference Time: {prediction_time:.2f} seconds") |
|
else: |
|
st.warning("No distractions detected.") |
|
|
|
else: |
|
uploaded_video = st.file_uploader("Upload Video", type=["mp4", "avi", "mov", "mkv", "webm"]) |
|
|
|
if uploaded_video is not None: |
|
tfile = tempfile.NamedTemporaryFile(delete=False, suffix=".mp4") |
|
tfile.write(uploaded_video.read()) |
|
temp_input_path = tfile.name |
|
temp_output_path = tempfile.mktemp(suffix="_distraction_detected.mp4") |
|
|
|
st.subheader("Video Information") |
|
cap = cv.VideoCapture(temp_input_path) |
|
fps = cap.get(cv.CAP_PROP_FPS) |
|
width = int(cap.get(cv.CAP_PROP_FRAME_WIDTH)) |
|
height = int(cap.get(cv.CAP_PROP_FRAME_HEIGHT)) |
|
total_frames = int(cap.get(cv.CAP_PROP_FRAME_COUNT)) |
|
duration = total_frames / fps if fps > 0 else 0 |
|
cap.release() |
|
|
|
col1, col2 = st.columns(2) |
|
with col1: |
|
st.metric("Duration", f"{duration:.2f} seconds") |
|
st.metric("Original FPS", f"{fps:.2f}") |
|
with col2: |
|
st.metric("Resolution", f"{width}x{height}") |
|
st.metric("Total Frames", total_frames) |
|
|
|
st.subheader("Original Video Preview") |
|
st.video(uploaded_video) |
|
|
|
if st.button("Process Video for Distraction Detection"): |
|
TARGET_PROCESSING_FPS = 10 |
|
|
|
PERSISTENCE_CONFIDENCE_THRESHOLD = 0.40 |
|
|
|
st.info(f"π For faster results, video will be processed at ~{TARGET_PROCESSING_FPS} FPS.") |
|
st.info(f"π§ Applying temporal smoothing to reduce status flickering (Persistence Threshold: {PERSISTENCE_CONFIDENCE_THRESHOLD*100:.0f}%).") |
|
|
|
progress_bar = st.progress(0, text="Starting video processing...") |
|
|
|
with st.spinner(f"Processing video... This may take a while."): |
|
model = YOLO(model_path) |
|
cap = cv.VideoCapture(temp_input_path) |
|
|
|
fourcc = cv.VideoWriter_fourcc(*'mp4v') |
|
out = cv.VideoWriter(temp_output_path, fourcc, fps, (width, height)) |
|
|
|
frame_skip_interval = max(1, round(fps / TARGET_PROCESSING_FPS)) |
|
|
|
frame_count = 0 |
|
last_best_box_coords = None |
|
last_best_box_label = "" |
|
last_status_text = "Status: Initializing..." |
|
last_status_color = (128, 128, 128) |
|
|
|
last_confirmed_class_name = 'safe driving' |
|
|
|
while cap.isOpened(): |
|
ret, frame = cap.read() |
|
if not ret: |
|
break |
|
|
|
frame_count += 1 |
|
progress = int((frame_count / total_frames) * 100) if total_frames > 0 else 0 |
|
progress_bar.progress(progress, text=f"Analyzing frame {frame_count}/{total_frames}") |
|
|
|
annotated_frame = frame.copy() |
|
|
|
if frame_count % frame_skip_interval == 0: |
|
results = model(annotated_frame) |
|
result = results[0] |
|
|
|
last_best_box_coords = None |
|
|
|
if len(result.boxes) > 0: |
|
boxes = result.boxes |
|
class_names_dict = result.names |
|
confidences = boxes.conf.cpu().numpy() |
|
classes = boxes.cls.cpu().numpy() |
|
|
|
|
|
final_box_to_use = None |
|
|
|
|
|
for i in range(len(boxes)): |
|
current_class_name = class_names_dict[int(classes[i])] |
|
if current_class_name == last_confirmed_class_name and confidences[i] >= PERSISTENCE_CONFIDENCE_THRESHOLD: |
|
final_box_to_use = boxes[i] |
|
break |
|
|
|
|
|
if final_box_to_use is None: |
|
max_conf_idx = confidences.argmax() |
|
final_box_to_use = boxes[max_conf_idx] |
|
|
|
|
|
|
|
x1, y1, x2, y2 = final_box_to_use.xyxy[0].cpu().numpy() |
|
confidence = final_box_to_use.conf[0].cpu().numpy() |
|
class_id = int(final_box_to_use.cls[0].cpu().numpy()) |
|
class_name = class_names_dict[class_id] |
|
|
|
|
|
last_confirmed_class_name = class_name |
|
last_best_box_coords = (int(x1), int(y1), int(x2), int(y2)) |
|
last_best_box_label = f"{class_name}: {confidence:.2f}" |
|
|
|
if class_name != 'safe driving': |
|
last_status_text = f"Status: {class_name.replace('_', ' ').title()}" |
|
last_status_color = (0, 0, 255) |
|
else: |
|
last_status_text = "Status: Safe Driving" |
|
last_status_color = (0, 128, 0) |
|
else: |
|
|
|
last_confirmed_class_name = 'safe driving' |
|
last_status_text = "Status: Safe Driving" |
|
last_status_color = (0, 128, 0) |
|
|
|
|
|
if last_best_box_coords: |
|
cv.rectangle(annotated_frame, (last_best_box_coords[0], last_best_box_coords[1]), |
|
(last_best_box_coords[2], last_best_box_coords[3]), (0, 255, 0), 2) |
|
cv.putText(annotated_frame, last_best_box_label, |
|
(last_best_box_coords[0], last_best_box_coords[1] - 10), |
|
cv.FONT_HERSHEY_SIMPLEX, 0.9, (0, 255, 0), 2) |
|
|
|
|
|
font_scale, font_thickness = 1.0, 2 |
|
(text_w, text_h), _ = cv.getTextSize(last_status_text, cv.FONT_HERSHEY_SIMPLEX, font_scale, font_thickness) |
|
padding = 10 |
|
rect_start = (padding, padding) |
|
rect_end = (padding + text_w + padding, padding + text_h + padding) |
|
cv.rectangle(annotated_frame, rect_start, rect_end, last_status_color, -1) |
|
text_pos = (padding + 5, padding + text_h + 5) |
|
cv.putText(annotated_frame, last_status_text, text_pos, cv.FONT_HERSHEY_SIMPLEX, font_scale, (255, 255, 255), font_thickness) |
|
|
|
out.write(annotated_frame) |
|
|
|
cap.release() |
|
out.release() |
|
progress_bar.progress(100, text="Video processing completed!") |
|
|
|
st.success("Video processed successfully!") |
|
|
|
if os.path.exists(temp_output_path): |
|
with open(temp_output_path, "rb") as file: |
|
video_bytes = file.read() |
|
|
|
st.download_button( |
|
label="π₯ Download Processed Video", |
|
data=video_bytes, |
|
file_name=f"distraction_detected_{uploaded_video.name}", |
|
mime="video/mp4", |
|
key="download_distraction_video" |
|
) |
|
|
|
st.subheader("Sample Frame from Processed Video") |
|
cap_out = cv.VideoCapture(temp_output_path) |
|
ret, frame = cap_out.read() |
|
if ret: |
|
frame_rgb = cv.cvtColor(frame, cv.COLOR_BGR2RGB) |
|
st.image(frame_rgb, caption="Sample frame with distraction detection", use_container_width=True) |
|
cap_out.release() |
|
|
|
try: |
|
os.unlink(temp_input_path) |
|
if os.path.exists(temp_output_path): os.unlink(temp_output_path) |
|
except Exception as e: |
|
st.warning(f"Failed to clean up temporary files: {e}") |
|
|
|
|
|
elif page == "Real-time Drowsiness Detection": |
|
st.title("π§ Real-time Drowsiness Detection") |
|
st.write("This will open your webcam and run the detection script.") |
|
if st.button("Start Drowsiness Detection"): |
|
with st.spinner("Launching webcam..."): |
|
subprocess.Popen(["python3", "drowsiness_detection.py", "--mode", "webcam"]) |
|
st.success("Drowsiness detection started in a separate window. Press 'q' in that window to quit.") |
|
|
|
|
|
elif page == "Video Drowsiness Detection": |
|
st.title("πΉ Video Drowsiness Detection") |
|
st.write("Upload a video file to detect drowsiness and download the processed video.") |
|
uploaded_video = st.file_uploader("Upload Video", type=["mp4", "avi", "mov", "mkv", "webm"]) |
|
if uploaded_video is not None: |
|
tfile = tempfile.NamedTemporaryFile(delete=False, suffix=".mp4") |
|
tfile.write(uploaded_video.read()) |
|
temp_input_path = tfile.name |
|
temp_output_path = tempfile.mktemp(suffix="_processed.mp4") |
|
st.subheader("Original Video Preview") |
|
st.video(uploaded_video) |
|
if st.button("Process Video for Drowsiness Detection"): |
|
progress_bar = st.progress(0, text="Preparing to process video...") |
|
with st.spinner("Processing video... This may take a while."): |
|
process = subprocess.Popen([ |
|
"python3", "drowsiness_detection.py", |
|
"--mode", "video", |
|
"--input", temp_input_path, |
|
"--output", temp_output_path |
|
], stdout=subprocess.PIPE, stderr=subprocess.PIPE, text=True) |
|
stdout, stderr = process.communicate() |
|
if process.returncode == 0: |
|
progress_bar.progress(100, text="Video processing completed!") |
|
if os.path.exists(temp_output_path): |
|
st.success("Video processed successfully!") |
|
if stdout: st.code(stdout) |
|
with open(temp_output_path, "rb") as file: video_bytes = file.read() |
|
st.download_button( |
|
label="π₯ Download Processed Video", |
|
data=video_bytes, |
|
file_name=f"drowsiness_detected_{uploaded_video.name}", |
|
mime="video/mp4", |
|
key="download_processed_video" |
|
) |
|
st.subheader("Sample Frame from Processed Video") |
|
cap = cv.VideoCapture(temp_output_path) |
|
ret, frame = cap.read() |
|
if ret: st.image(cv.cvtColor(frame, cv.COLOR_BGR2RGB), caption="Sample frame with drowsiness detection", use_container_width=True) |
|
cap.release() |
|
else: |
|
st.error("Error: Processed video file not found.") |
|
if stderr: st.code(stderr) |
|
else: |
|
st.error("An error occurred during video processing.") |
|
if stderr: st.code(stderr) |
|
try: |
|
if os.path.exists(temp_input_path): os.unlink(temp_input_path) |
|
if os.path.exists(temp_output_path): os.unlink(temp_output_path) |
|
except Exception as e: |
|
st.warning(f"Failed to clean up temporary files: {e}") |