Driver-Distraction-Detection / src /drowsiness_detection.py
simran0608's picture
Upload 8 files
2440952 verified
raw
history blame
9.72 kB
# PREP DEPENDENCIES
from scipy.spatial import distance as dist
from imutils import face_utils
from threading import Thread
import numpy as np
import cv2 as cv
import imutils
import dlib
import pygame # Used for playing alarm sounds cross-platform
import argparse
import os
# --- INITIALIZE MODELS AND CONSTANTS ---
# Haar cascade classifier for face detection
haar_cascade_face_detector = "dependencies/haarcascade_frontalface_default.xml"
face_detector = cv.CascadeClassifier(haar_cascade_face_detector)
# Dlib facial landmark detector
dlib_facial_landmark_predictor = "dependencies/shape_predictor_68_face_landmarks.dat"
landmark_predictor = dlib.shape_predictor(dlib_facial_landmark_predictor)
# Important Variables
font = cv.FONT_HERSHEY_SIMPLEX
# --- INITIALIZE MODELS AND CONSTANTS ---
# Eye Drowsiness Detection
EYE_ASPECT_RATIO_THRESHOLD = 0.25
EYE_CLOSED_THRESHOLD = 20
EYE_THRESH_COUNTER = 0
DROWSY_COUNTER = 0
drowsy_alert = False
# Mouth Yawn Detection
MOUTH_ASPECT_RATIO_THRESHOLD = 0.5
MOUTH_OPEN_THRESHOLD = 15
YAWN_THRESH_COUNTER = 0
YAWN_COUNTER = 0
yawn_alert = False
# NEW: Head Not Visible Detection
FACE_LOST_THRESHOLD = 25 # Conseq. frames face must be lost to trigger alert
FACE_LOST_COUNTER = 0
HEAD_DOWN_COUNTER = 0 # Renaming for clarity
head_down_alert = False
# --- AUDIO SETUP (using Pygame) ---
pygame.mixer.init()
drowsiness_sound = pygame.mixer.Sound("dependencies/audio/drowsiness-detected.mp3")
yawn_sound = pygame.mixer.Sound("dependencies/audio/yawning-detected.mp3")
# head_down_sound = pygame.mixer.Sound("dependencies/audio/head-down-detected.mp3")
# --- CORE FUNCTIONS ---
def play_alarm(sound_to_play):
if not pygame.mixer.get_busy():
sound_to_play.play()
def generate_alert(final_eye_ratio, final_mouth_ratio):
global EYE_THRESH_COUNTER, YAWN_THRESH_COUNTER
global drowsy_alert, yawn_alert
global DROWSY_COUNTER, YAWN_COUNTER
# Drowsiness check
if final_eye_ratio < EYE_ASPECT_RATIO_THRESHOLD:
EYE_THRESH_COUNTER += 1
if EYE_THRESH_COUNTER >= EYE_CLOSED_THRESHOLD:
if not drowsy_alert:
DROWSY_COUNTER += 1
drowsy_alert = True
Thread(target=play_alarm, args=(drowsiness_sound,)).start()
else:
EYE_THRESH_COUNTER = 0
drowsy_alert = False
# Yawn check
if final_mouth_ratio > MOUTH_ASPECT_RATIO_THRESHOLD:
YAWN_THRESH_COUNTER += 1
if YAWN_THRESH_COUNTER >= MOUTH_OPEN_THRESHOLD:
if not yawn_alert:
YAWN_COUNTER += 1
yawn_alert = True
Thread(target=play_alarm, args=(yawn_sound,)).start()
else:
YAWN_THRESH_COUNTER = 0
yawn_alert = False
def detect_facial_landmarks(x, y, w, h, gray_frame):
face = dlib.rectangle(int(x), int(y), int(x + w), int(y + h))
face_landmarks = landmark_predictor(gray_frame, face)
face_landmarks = face_utils.shape_to_np(face_landmarks)
return face_landmarks
def eye_aspect_ratio(eye):
A = dist.euclidean(eye[1], eye[5])
B = dist.euclidean(eye[2], eye[4])
C = dist.euclidean(eye[0], eye[3])
ear = (A + B) / (2.0 * C)
return ear
def final_eye_aspect_ratio(shape):
(lStart, lEnd) = face_utils.FACIAL_LANDMARKS_IDXS["left_eye"]
(rStart, rEnd) = face_utils.FACIAL_LANDMARKS_IDXS["right_eye"]
left_eye = shape[lStart:lEnd]
right_eye = shape[rStart:rEnd]
left_ear = eye_aspect_ratio(left_eye)
right_ear = eye_aspect_ratio(right_eye)
final_ear = (left_ear + right_ear) / 2.0
return final_ear, left_eye, right_eye
def mouth_aspect_ratio(mouth):
A = dist.euclidean(mouth[2], mouth[10])
B = dist.euclidean(mouth[4], mouth[8])
C = dist.euclidean(mouth[0], mouth[6])
mar = (A + B) / (2.0 * C)
return mar
def final_mouth_aspect_ratio(shape):
(mStart, mEnd) = face_utils.FACIAL_LANDMARKS_IDXS["mouth"]
mouth = shape[mStart:mEnd]
return mouth_aspect_ratio(mouth), mouth
def head_pose_ratio(shape):
nose_tip = shape[30]
chin_tip = shape[8]
left_face_corner = shape[0]
right_face_corner = shape[16]
nose_to_chin_dist = dist.euclidean(nose_tip, chin_tip)
face_width = dist.euclidean(left_face_corner, right_face_corner)
if face_width == 0:
return 0.0
hpr = nose_to_chin_dist / face_width
return hpr
def reset_counters():
global EYE_THRESH_COUNTER, YAWN_THRESH_COUNTER, FACE_LOST_COUNTER
global DROWSY_COUNTER, YAWN_COUNTER, HEAD_DOWN_COUNTER
global drowsy_alert, yawn_alert, head_down_alert
EYE_THRESH_COUNTER, YAWN_THRESH_COUNTER, FACE_LOST_COUNTER = 0, 0, 0
DROWSY_COUNTER, YAWN_COUNTER, HEAD_DOWN_COUNTER = 0, 0, 0
drowsy_alert, yawn_alert, head_down_alert = False, False, False
def process_frame(frame):
global FACE_LOST_COUNTER, head_down_alert, HEAD_DOWN_COUNTER
frame = imutils.resize(frame, width=640)
gray_frame = cv.cvtColor(frame, cv.COLOR_BGR2GRAY)
faces = face_detector.detectMultiScale(gray_frame, scaleFactor=1.1, minNeighbors=5, minSize=(30, 30), flags=cv.CASCADE_SCALE_IMAGE)
if len(faces) > 0:
FACE_LOST_COUNTER = 0
head_down_alert = False
(x, y, w, h) = faces[0]
face_landmarks = detect_facial_landmarks(x, y, w, h, gray_frame)
final_ear, left_eye, right_eye = final_eye_aspect_ratio(face_landmarks)
final_mar, mouth = final_mouth_aspect_ratio(face_landmarks)
# left_eye_hull, right_eye_hull, mouth_hull = cv.convexHull(left_eye), cv.convexHull(right_eye), cv.convexHull(mouth)
# cv.drawContours(frame, [left_eye_hull], -1, (0, 255, 0), 1)
# cv.drawContours(frame, [right_eye_hull], -1, (0, 255, 0), 1)
# cv.drawContours(frame, [mouth_hull], -1, (0, 255, 0), 1)
generate_alert(final_ear, final_mar)
cv.putText(frame, f"EAR: {final_ear:.2f}", (10, 30), font, 0.7, (0, 0, 255), 2)
cv.putText(frame, f"MAR: {final_mar:.2f}", (10, 60), font, 0.7, (0, 0, 255), 2)
else:
FACE_LOST_COUNTER += 1
if FACE_LOST_COUNTER >= FACE_LOST_THRESHOLD and not head_down_alert:
HEAD_DOWN_COUNTER += 1
head_down_alert = True
cv.putText(frame, f"Drowsy: {DROWSY_COUNTER}", (480, 30), font, 0.7, (255, 255, 0), 2)
cv.putText(frame, f"Yawn: {YAWN_COUNTER}", (480, 60), font, 0.7, (255, 255, 0), 2)
cv.putText(frame, f"Head Down: {HEAD_DOWN_COUNTER}", (480, 90), font, 0.7, (255, 255, 0), 2)
if drowsy_alert: cv.putText(frame, "DROWSINESS ALERT!", (150, 30), font, 0.9, (0, 0, 255), 2)
if yawn_alert: cv.putText(frame, "YAWN ALERT!", (200, 60), font, 0.9, (0, 0, 255), 2)
if head_down_alert: cv.putText(frame, "HEAD NOT VISIBLE!", (180, 90), font, 0.9, (0, 0, 255), 2)
return frame
def process_video(input_path, output_path=None):
reset_counters()
video_stream = cv.VideoCapture(input_path)
if not video_stream.isOpened():
print(f"Error: Could not open video file {input_path}")
return False
fps = int(video_stream.get(cv.CAP_PROP_FPS))
width = int(video_stream.get(cv.CAP_PROP_FRAME_WIDTH))
height = int(video_stream.get(cv.CAP_PROP_FRAME_HEIGHT))
print(f"Processing video: {input_path}")
print(f"Original Res: {width}x{height}, FPS: {fps}")
video_writer = None
if output_path:
fourcc = cv.VideoWriter_fourcc(*'mp4v')
# --- FIX: Calculate correct output dimensions to prevent corruption ---
# The process_frame function resizes frames to a fixed width of 640.
output_width = 640
# Maintain aspect ratio
output_height = int(height * (output_width / float(width)))
output_dims = (output_width, output_height)
video_writer = cv.VideoWriter(output_path, fourcc, fps, output_dims)
print(f"Outputting video with Res: {output_dims[0]}x{output_dims[1]}")
while True:
ret, frame = video_stream.read()
if not ret: break
processed_frame = process_frame(frame)
if video_writer: video_writer.write(processed_frame)
video_stream.release()
if video_writer: video_writer.release()
print("Video processing complete!")
print(f"Final Stats - Drowsy: {DROWSY_COUNTER}, Yawn: {YAWN_COUNTER}, Head Down: {HEAD_DOWN_COUNTER}")
return True
def run_webcam():
reset_counters()
video_stream = cv.VideoCapture(0)
if not video_stream.isOpened():
print("Error: Could not open webcam")
return False
while True:
ret, frame = video_stream.read()
if not ret:
print("Failed to grab frame")
break
processed_frame = process_frame(frame)
cv.imshow("Live Drowsiness and Yawn Detection", processed_frame)
if cv.waitKey(1) & 0xFF == ord('q'): break
video_stream.release()
cv.destroyAllWindows()
return True
# --- MAIN EXECUTION LOOP ---
if __name__ == "__main__":
parser = argparse.ArgumentParser(description='Drowsiness Detection System')
parser.add_argument('--mode', choices=['webcam', 'video'], default='webcam', help='Mode of operation')
parser.add_argument('--input', type=str, help='Input video file path for video mode')
parser.add_argument('--output', type=str, help='Output video file path for video mode')
args = parser.parse_args()
if args.mode == 'webcam':
print("Starting webcam detection...")
run_webcam()
elif args.mode == 'video':
if not args.input:
print("Error: --input argument is required for video mode.")
elif not os.path.exists(args.input):
print(f"Error: Input file not found at {args.input}")
else:
process_video(args.input, args.output)