File size: 10,297 Bytes
3e098b3
 
530a851
 
 
 
 
 
 
 
 
 
4d85734
3e098b3
 
 
530a851
4d85734
 
 
 
 
 
 
 
 
 
 
 
 
 
530a851
 
 
 
3e098b3
 
 
 
4d85734
530a851
 
 
 
 
 
 
3e098b3
530a851
 
4d85734
3e098b3
4d85734
3e098b3
 
4d85734
 
3e098b3
 
4d85734
3e098b3
4d85734
 
 
 
 
 
 
 
 
 
 
 
 
3e098b3
 
4d85734
 
 
 
 
 
 
 
 
 
 
 
 
530a851
 
3e098b3
4d85734
530a851
 
3e098b3
 
 
4d85734
 
 
530a851
 
 
 
 
 
3e098b3
 
 
4d85734
 
 
530a851
 
 
 
 
4d85734
 
 
 
530a851
 
3e098b3
530a851
 
4d85734
530a851
 
 
3e098b3
530a851
 
4d85734
530a851
 
3e098b3
 
 
530a851
 
4d85734
530a851
 
 
3e098b3
530a851
 
4d85734
530a851
3e098b3
530a851
 
3e098b3
530a851
 
 
 
 
 
 
 
3e098b3
530a851
3e098b3
 
530a851
 
4d85734
 
 
 
 
 
 
 
 
3e098b3
530a851
 
 
 
4d85734
 
 
 
 
530a851
4d85734
 
 
 
 
 
 
 
 
 
 
 
530a851
 
 
 
 
3e098b3
4d85734
530a851
 
 
4d85734
 
 
 
 
 
 
 
3e098b3
530a851
 
3e098b3
530a851
3e098b3
530a851
 
 
 
4d85734
 
 
 
 
 
530a851
3e098b3
 
 
 
 
 
 
 
4d85734
 
3e098b3
 
4d85734
 
3e098b3
 
 
530a851
3e098b3
 
530a851
3e098b3
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
# drowsiness_detection.py

from scipy.spatial import distance as dist
from imutils import face_utils
from threading import Thread
import numpy as np
import cv2 as cv
import imutils
import dlib
import argparse
import os

# --- FIXED: Models and Constants with better error handling ---
script_dir = os.path.dirname(os.path.abspath(__file__))
haar_cascade_face_detector = os.path.join(script_dir, "haarcascade_frontalface_default.xml")
dlib_facial_landmark_predictor = os.path.join(script_dir, "shape_predictor_68_face_landmarks.dat")

# Check if required files exist
if not os.path.exists(haar_cascade_face_detector):
    print(f"Warning: Face detector file not found at {haar_cascade_face_detector}")
    # Try to use OpenCV's built-in cascade
    face_detector = cv.CascadeClassifier(cv.data.haarcascades + 'haarcascade_frontalface_default.xml')
else:
    face_detector = cv.CascadeClassifier(haar_cascade_face_detector)

if not os.path.exists(dlib_facial_landmark_predictor):
    print(f"Error: Dlib predictor file not found at {dlib_facial_landmark_predictor}")
    print("Please download shape_predictor_68_face_landmarks.dat from dlib's website")
    landmark_predictor = None
else:
    landmark_predictor = dlib.shape_predictor(dlib_facial_landmark_predictor)

font = cv.FONT_HERSHEY_SIMPLEX
EYE_ASPECT_RATIO_THRESHOLD = 0.25
EYE_CLOSED_THRESHOLD = 20
MOUTH_ASPECT_RATIO_THRESHOLD = 0.5
MOUTH_OPEN_THRESHOLD = 15
FACE_LOST_THRESHOLD = 25

# --- GLOBAL STATE VARIABLES ---
EYE_THRESH_COUNTER = 0
DROWSY_COUNTER = 0
drowsy_alert = False
YAWN_THRESH_COUNTER = 0
YAWN_COUNTER = 0
yawn_alert = False
FACE_LOST_COUNTER = 0
HEAD_DOWN_COUNTER = 0
head_down_alert = False

# --- FIXED: Audio handling for cloud deployment ---
_audio_initialized = False
_audio_available = False

def _initialize_audio():
    """Initializes audio only if available (for local deployment)."""
    global _audio_initialized, _audio_available
    if _audio_initialized:
        return
    
    try:
        # Check if we're in a cloud environment
        if os.getenv("SPACE_ID") or os.getenv("HUGGINGFACE_SPACE"):
            print("Cloud environment detected - audio disabled")
            _audio_available = False
        else:
            import pygame
            pygame.mixer.init()
            _audio_available = True
            print("Audio initialized successfully.")
    except Exception as e:
        print(f"Audio not available: {e}")
        _audio_available = False
    
    _audio_initialized = True

def play_alarm(sound_file=None):
    """Plays an alarm sound if audio is available."""
    _initialize_audio()
    if not _audio_available:
        return
    
    try:
        import pygame
        if sound_file and os.path.exists(sound_file) and not pygame.mixer.get_busy():
            sound = pygame.mixer.Sound(sound_file)
            sound.play()
    except Exception as e:
        print(f"Could not play sound: {e}")

def generate_alert(final_eye_ratio, final_mouth_ratio):
    global EYE_THRESH_COUNTER, YAWN_THRESH_COUNTER, drowsy_alert, yawn_alert, DROWSY_COUNTER, YAWN_COUNTER
    
    if final_eye_ratio < EYE_ASPECT_RATIO_THRESHOLD:
        EYE_THRESH_COUNTER += 1
        if EYE_THRESH_COUNTER >= EYE_CLOSED_THRESHOLD and not drowsy_alert:
            DROWSY_COUNTER += 1
            drowsy_alert = True
            # Try to play sound if available
            drowsiness_sound = os.path.join(script_dir, "drowsiness-detected.mp3")
            Thread(target=play_alarm, args=(drowsiness_sound,)).start()
    else:
        EYE_THRESH_COUNTER = 0
        drowsy_alert = False

    if final_mouth_ratio > MOUTH_ASPECT_RATIO_THRESHOLD:
        YAWN_THRESH_COUNTER += 1
        if YAWN_THRESH_COUNTER >= MOUTH_OPEN_THRESHOLD and not yawn_alert:
            YAWN_COUNTER += 1
            yawn_alert = True
            # Try to play sound if available
            yawn_sound = os.path.join(script_dir, "yawning-detected.mp3")
            Thread(target=play_alarm, args=(yawn_sound,)).start()
    else:
        YAWN_THRESH_COUNTER = 0
        yawn_alert = False

def detect_facial_landmarks(x, y, w, h, gray_frame):
    """Detect facial landmarks using dlib predictor."""
    if landmark_predictor is None:
        return None
    
    face = dlib.rectangle(int(x), int(y), int(x + w), int(y + h))
    face_landmarks = landmark_predictor(gray_frame, face)
    return face_utils.shape_to_np(face_landmarks)

def eye_aspect_ratio(eye):
    """Calculate eye aspect ratio."""
    A = dist.euclidean(eye[1], eye[5])
    B = dist.euclidean(eye[2], eye[4])
    C = dist.euclidean(eye[0], eye[3])
    return (A + B) / (2.0 * C)

def final_eye_aspect_ratio(shape):
    """Calculate final eye aspect ratio from both eyes."""
    (lStart, lEnd) = face_utils.FACIAL_LANDMARKS_IDXS["left_eye"]
    (rStart, rEnd) = face_utils.FACIAL_LANDMARKS_IDXS["right_eye"]
    left_ear = eye_aspect_ratio(shape[lStart:lEnd])
    right_ear = eye_aspect_ratio(shape[rStart:rEnd])
    return (left_ear + right_ear) / 2.0

def mouth_aspect_ratio(mouth):
    """Calculate mouth aspect ratio."""
    A = dist.euclidean(mouth[2], mouth[10])
    B = dist.euclidean(mouth[4], mouth[8])
    C = dist.euclidean(mouth[0], mouth[6])
    return (A + B) / (2.0 * C)

def final_mouth_aspect_ratio(shape):
    """Calculate final mouth aspect ratio."""
    (mStart, mEnd) = face_utils.FACIAL_LANDMARKS_IDXS["mouth"]
    return mouth_aspect_ratio(shape[mStart:mEnd])

def reset_counters():
    """Resets all global counters and alerts for a new processing session."""
    global EYE_THRESH_COUNTER, YAWN_THRESH_COUNTER, FACE_LOST_COUNTER
    global DROWSY_COUNTER, YAWN_COUNTER, HEAD_DOWN_COUNTER
    global drowsy_alert, yawn_alert, head_down_alert
    EYE_THRESH_COUNTER, YAWN_THRESH_COUNTER, FACE_LOST_COUNTER = 0, 0, 0
    DROWSY_COUNTER, YAWN_COUNTER, HEAD_DOWN_COUNTER = 0, 0, 0
    drowsy_alert, yawn_alert, head_down_alert = False, False, False

def process_frame(frame):
    """Processes a single frame to detect drowsiness, yawns, and head position."""
    global FACE_LOST_COUNTER, head_down_alert, HEAD_DOWN_COUNTER
    
    # The output frame will have a fixed width of 640px
    frame = imutils.resize(frame, width=640)
    gray_frame = cv.cvtColor(frame, cv.COLOR_BGR2GRAY)
    
    # Detect faces
    faces = face_detector.detectMultiScale(
        gray_frame, 
        scaleFactor=1.1, 
        minNeighbors=5, 
        minSize=(30, 30), 
        flags=cv.CASCADE_SCALE_IMAGE
    )

    if len(faces) > 0:
        FACE_LOST_COUNTER = 0
        head_down_alert = False
        (x, y, w, h) = faces[0]
        
        # Draw rectangle around face
        cv.rectangle(frame, (x, y), (x + w, y + h), (0, 255, 0), 2)
        
        # Detect landmarks if predictor is available
        face_landmarks = detect_facial_landmarks(x, y, w, h, gray_frame)
        
        if face_landmarks is not None:
            final_ear = final_eye_aspect_ratio(face_landmarks)
            final_mar = final_mouth_aspect_ratio(face_landmarks)
            generate_alert(final_ear, final_mar)
            
            # Display ratios
            cv.putText(frame, f"EAR: {final_ear:.2f}", (10, 30), font, 0.7, (0, 0, 255), 2)
            cv.putText(frame, f"MAR: {final_mar:.2f}", (10, 60), font, 0.7, (0, 0, 255), 2)
        else:
            # If no landmarks detected, show warning
            cv.putText(frame, "Landmarks not available", (10, 30), font, 0.7, (0, 0, 255), 2)
    else:
        FACE_LOST_COUNTER += 1
        if FACE_LOST_COUNTER >= FACE_LOST_THRESHOLD and not head_down_alert:
            HEAD_DOWN_COUNTER += 1
            head_down_alert = True
            
    # Draw status information
    cv.putText(frame, f"Drowsy: {DROWSY_COUNTER}", (480, 30), font, 0.7, (255, 255, 0), 2)
    cv.putText(frame, f"Yawn: {YAWN_COUNTER}", (480, 60), font, 0.7, (255, 255, 0), 2)
    cv.putText(frame, f"Head Down: {HEAD_DOWN_COUNTER}", (480, 90), font, 0.7, (255, 255, 0), 2)
    
    # Draw alerts
    if drowsy_alert:
        cv.putText(frame, "DROWSINESS ALERT!", (150, 30), font, 0.9, (0, 0, 255), 2)
    if yawn_alert:
        cv.putText(frame, "YAWN ALERT!", (200, 60), font, 0.9, (0, 0, 255), 2)
    if head_down_alert:
        cv.putText(frame, "HEAD NOT VISIBLE!", (180, 90), font, 0.9, (0, 0, 255), 2)
    
    return frame

# --- Command-line execution for local testing ---
if __name__ == "__main__":
    parser = argparse.ArgumentParser(description='Drowsiness Detection System (Local Runner)')
    parser.add_argument('--mode', choices=['webcam', 'video'], default='webcam', help='Mode of operation')
    parser.add_argument('--input', type=str, help='Input video file path for video mode')
    args = parser.parse_args()
    
    # Check if landmark predictor is available
    if landmark_predictor is None:
        print("Error: Dlib facial landmark predictor not found!")
        print("Please download shape_predictor_68_face_landmarks.dat")
        exit(1)
    
    if args.mode == 'webcam':
        print("Starting webcam detection... Press 'q' to quit.")
        cap = cv.VideoCapture(0)
        if not cap.isOpened():
            print("Error: Could not open webcam.")
        else:
            reset_counters()
            while True:
                ret, frame = cap.read()
                if not ret:
                    break
                processed_frame = process_frame(frame)
                cv.imshow("Live Drowsiness Detection", processed_frame)
                if cv.waitKey(1) & 0xFF == ord('q'):
                    break
            cap.release()
            cv.destroyAllWindows()
            
    elif args.mode == 'video':
        if not args.input or not os.path.exists(args.input):
            print("Error: Please provide a valid --input video file path.")
        else:
            from video_processor import process_video_with_progress
            output_file = args.input.replace('.mp4', '_processed.mp4')
            print(f"Processing video {args.input}, output will be {output_file}")
            
            def cli_progress(current, total):
                percent = int((current / total) * 100)
                print(f"\rProcessing: {percent}%", end="")

            process_video_with_progress(args.input, output_file, progress_callback=cli_progress)
            print("\nDone.")