File size: 10,297 Bytes
3e098b3 530a851 4d85734 3e098b3 530a851 4d85734 530a851 3e098b3 4d85734 530a851 3e098b3 530a851 4d85734 3e098b3 4d85734 3e098b3 4d85734 3e098b3 4d85734 3e098b3 4d85734 3e098b3 4d85734 530a851 3e098b3 4d85734 530a851 3e098b3 4d85734 530a851 3e098b3 4d85734 530a851 4d85734 530a851 3e098b3 530a851 4d85734 530a851 3e098b3 530a851 4d85734 530a851 3e098b3 530a851 4d85734 530a851 3e098b3 530a851 4d85734 530a851 3e098b3 530a851 3e098b3 530a851 3e098b3 530a851 3e098b3 530a851 4d85734 3e098b3 530a851 4d85734 530a851 4d85734 530a851 3e098b3 4d85734 530a851 4d85734 3e098b3 530a851 3e098b3 530a851 3e098b3 530a851 4d85734 530a851 3e098b3 4d85734 3e098b3 4d85734 3e098b3 530a851 3e098b3 530a851 3e098b3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 |
# drowsiness_detection.py
from scipy.spatial import distance as dist
from imutils import face_utils
from threading import Thread
import numpy as np
import cv2 as cv
import imutils
import dlib
import argparse
import os
# --- FIXED: Models and Constants with better error handling ---
script_dir = os.path.dirname(os.path.abspath(__file__))
haar_cascade_face_detector = os.path.join(script_dir, "haarcascade_frontalface_default.xml")
dlib_facial_landmark_predictor = os.path.join(script_dir, "shape_predictor_68_face_landmarks.dat")
# Check if required files exist
if not os.path.exists(haar_cascade_face_detector):
print(f"Warning: Face detector file not found at {haar_cascade_face_detector}")
# Try to use OpenCV's built-in cascade
face_detector = cv.CascadeClassifier(cv.data.haarcascades + 'haarcascade_frontalface_default.xml')
else:
face_detector = cv.CascadeClassifier(haar_cascade_face_detector)
if not os.path.exists(dlib_facial_landmark_predictor):
print(f"Error: Dlib predictor file not found at {dlib_facial_landmark_predictor}")
print("Please download shape_predictor_68_face_landmarks.dat from dlib's website")
landmark_predictor = None
else:
landmark_predictor = dlib.shape_predictor(dlib_facial_landmark_predictor)
font = cv.FONT_HERSHEY_SIMPLEX
EYE_ASPECT_RATIO_THRESHOLD = 0.25
EYE_CLOSED_THRESHOLD = 20
MOUTH_ASPECT_RATIO_THRESHOLD = 0.5
MOUTH_OPEN_THRESHOLD = 15
FACE_LOST_THRESHOLD = 25
# --- GLOBAL STATE VARIABLES ---
EYE_THRESH_COUNTER = 0
DROWSY_COUNTER = 0
drowsy_alert = False
YAWN_THRESH_COUNTER = 0
YAWN_COUNTER = 0
yawn_alert = False
FACE_LOST_COUNTER = 0
HEAD_DOWN_COUNTER = 0
head_down_alert = False
# --- FIXED: Audio handling for cloud deployment ---
_audio_initialized = False
_audio_available = False
def _initialize_audio():
"""Initializes audio only if available (for local deployment)."""
global _audio_initialized, _audio_available
if _audio_initialized:
return
try:
# Check if we're in a cloud environment
if os.getenv("SPACE_ID") or os.getenv("HUGGINGFACE_SPACE"):
print("Cloud environment detected - audio disabled")
_audio_available = False
else:
import pygame
pygame.mixer.init()
_audio_available = True
print("Audio initialized successfully.")
except Exception as e:
print(f"Audio not available: {e}")
_audio_available = False
_audio_initialized = True
def play_alarm(sound_file=None):
"""Plays an alarm sound if audio is available."""
_initialize_audio()
if not _audio_available:
return
try:
import pygame
if sound_file and os.path.exists(sound_file) and not pygame.mixer.get_busy():
sound = pygame.mixer.Sound(sound_file)
sound.play()
except Exception as e:
print(f"Could not play sound: {e}")
def generate_alert(final_eye_ratio, final_mouth_ratio):
global EYE_THRESH_COUNTER, YAWN_THRESH_COUNTER, drowsy_alert, yawn_alert, DROWSY_COUNTER, YAWN_COUNTER
if final_eye_ratio < EYE_ASPECT_RATIO_THRESHOLD:
EYE_THRESH_COUNTER += 1
if EYE_THRESH_COUNTER >= EYE_CLOSED_THRESHOLD and not drowsy_alert:
DROWSY_COUNTER += 1
drowsy_alert = True
# Try to play sound if available
drowsiness_sound = os.path.join(script_dir, "drowsiness-detected.mp3")
Thread(target=play_alarm, args=(drowsiness_sound,)).start()
else:
EYE_THRESH_COUNTER = 0
drowsy_alert = False
if final_mouth_ratio > MOUTH_ASPECT_RATIO_THRESHOLD:
YAWN_THRESH_COUNTER += 1
if YAWN_THRESH_COUNTER >= MOUTH_OPEN_THRESHOLD and not yawn_alert:
YAWN_COUNTER += 1
yawn_alert = True
# Try to play sound if available
yawn_sound = os.path.join(script_dir, "yawning-detected.mp3")
Thread(target=play_alarm, args=(yawn_sound,)).start()
else:
YAWN_THRESH_COUNTER = 0
yawn_alert = False
def detect_facial_landmarks(x, y, w, h, gray_frame):
"""Detect facial landmarks using dlib predictor."""
if landmark_predictor is None:
return None
face = dlib.rectangle(int(x), int(y), int(x + w), int(y + h))
face_landmarks = landmark_predictor(gray_frame, face)
return face_utils.shape_to_np(face_landmarks)
def eye_aspect_ratio(eye):
"""Calculate eye aspect ratio."""
A = dist.euclidean(eye[1], eye[5])
B = dist.euclidean(eye[2], eye[4])
C = dist.euclidean(eye[0], eye[3])
return (A + B) / (2.0 * C)
def final_eye_aspect_ratio(shape):
"""Calculate final eye aspect ratio from both eyes."""
(lStart, lEnd) = face_utils.FACIAL_LANDMARKS_IDXS["left_eye"]
(rStart, rEnd) = face_utils.FACIAL_LANDMARKS_IDXS["right_eye"]
left_ear = eye_aspect_ratio(shape[lStart:lEnd])
right_ear = eye_aspect_ratio(shape[rStart:rEnd])
return (left_ear + right_ear) / 2.0
def mouth_aspect_ratio(mouth):
"""Calculate mouth aspect ratio."""
A = dist.euclidean(mouth[2], mouth[10])
B = dist.euclidean(mouth[4], mouth[8])
C = dist.euclidean(mouth[0], mouth[6])
return (A + B) / (2.0 * C)
def final_mouth_aspect_ratio(shape):
"""Calculate final mouth aspect ratio."""
(mStart, mEnd) = face_utils.FACIAL_LANDMARKS_IDXS["mouth"]
return mouth_aspect_ratio(shape[mStart:mEnd])
def reset_counters():
"""Resets all global counters and alerts for a new processing session."""
global EYE_THRESH_COUNTER, YAWN_THRESH_COUNTER, FACE_LOST_COUNTER
global DROWSY_COUNTER, YAWN_COUNTER, HEAD_DOWN_COUNTER
global drowsy_alert, yawn_alert, head_down_alert
EYE_THRESH_COUNTER, YAWN_THRESH_COUNTER, FACE_LOST_COUNTER = 0, 0, 0
DROWSY_COUNTER, YAWN_COUNTER, HEAD_DOWN_COUNTER = 0, 0, 0
drowsy_alert, yawn_alert, head_down_alert = False, False, False
def process_frame(frame):
"""Processes a single frame to detect drowsiness, yawns, and head position."""
global FACE_LOST_COUNTER, head_down_alert, HEAD_DOWN_COUNTER
# The output frame will have a fixed width of 640px
frame = imutils.resize(frame, width=640)
gray_frame = cv.cvtColor(frame, cv.COLOR_BGR2GRAY)
# Detect faces
faces = face_detector.detectMultiScale(
gray_frame,
scaleFactor=1.1,
minNeighbors=5,
minSize=(30, 30),
flags=cv.CASCADE_SCALE_IMAGE
)
if len(faces) > 0:
FACE_LOST_COUNTER = 0
head_down_alert = False
(x, y, w, h) = faces[0]
# Draw rectangle around face
cv.rectangle(frame, (x, y), (x + w, y + h), (0, 255, 0), 2)
# Detect landmarks if predictor is available
face_landmarks = detect_facial_landmarks(x, y, w, h, gray_frame)
if face_landmarks is not None:
final_ear = final_eye_aspect_ratio(face_landmarks)
final_mar = final_mouth_aspect_ratio(face_landmarks)
generate_alert(final_ear, final_mar)
# Display ratios
cv.putText(frame, f"EAR: {final_ear:.2f}", (10, 30), font, 0.7, (0, 0, 255), 2)
cv.putText(frame, f"MAR: {final_mar:.2f}", (10, 60), font, 0.7, (0, 0, 255), 2)
else:
# If no landmarks detected, show warning
cv.putText(frame, "Landmarks not available", (10, 30), font, 0.7, (0, 0, 255), 2)
else:
FACE_LOST_COUNTER += 1
if FACE_LOST_COUNTER >= FACE_LOST_THRESHOLD and not head_down_alert:
HEAD_DOWN_COUNTER += 1
head_down_alert = True
# Draw status information
cv.putText(frame, f"Drowsy: {DROWSY_COUNTER}", (480, 30), font, 0.7, (255, 255, 0), 2)
cv.putText(frame, f"Yawn: {YAWN_COUNTER}", (480, 60), font, 0.7, (255, 255, 0), 2)
cv.putText(frame, f"Head Down: {HEAD_DOWN_COUNTER}", (480, 90), font, 0.7, (255, 255, 0), 2)
# Draw alerts
if drowsy_alert:
cv.putText(frame, "DROWSINESS ALERT!", (150, 30), font, 0.9, (0, 0, 255), 2)
if yawn_alert:
cv.putText(frame, "YAWN ALERT!", (200, 60), font, 0.9, (0, 0, 255), 2)
if head_down_alert:
cv.putText(frame, "HEAD NOT VISIBLE!", (180, 90), font, 0.9, (0, 0, 255), 2)
return frame
# --- Command-line execution for local testing ---
if __name__ == "__main__":
parser = argparse.ArgumentParser(description='Drowsiness Detection System (Local Runner)')
parser.add_argument('--mode', choices=['webcam', 'video'], default='webcam', help='Mode of operation')
parser.add_argument('--input', type=str, help='Input video file path for video mode')
args = parser.parse_args()
# Check if landmark predictor is available
if landmark_predictor is None:
print("Error: Dlib facial landmark predictor not found!")
print("Please download shape_predictor_68_face_landmarks.dat")
exit(1)
if args.mode == 'webcam':
print("Starting webcam detection... Press 'q' to quit.")
cap = cv.VideoCapture(0)
if not cap.isOpened():
print("Error: Could not open webcam.")
else:
reset_counters()
while True:
ret, frame = cap.read()
if not ret:
break
processed_frame = process_frame(frame)
cv.imshow("Live Drowsiness Detection", processed_frame)
if cv.waitKey(1) & 0xFF == ord('q'):
break
cap.release()
cv.destroyAllWindows()
elif args.mode == 'video':
if not args.input or not os.path.exists(args.input):
print("Error: Please provide a valid --input video file path.")
else:
from video_processor import process_video_with_progress
output_file = args.input.replace('.mp4', '_processed.mp4')
print(f"Processing video {args.input}, output will be {output_file}")
def cli_progress(current, total):
percent = int((current / total) * 100)
print(f"\rProcessing: {percent}%", end="")
process_video_with_progress(args.input, output_file, progress_callback=cli_progress)
print("\nDone.") |