File size: 16,246 Bytes
e7536b9 aacb488 2440952 00c473d 2440952 00c473d 2440952 00c473d 2440952 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 |
import asyncio
import sys
if sys.platform.startswith('linux') and sys.version_info >= (3, 8):
try:
asyncio.set_event_loop_policy(asyncio.DefaultEventLoopPolicy())
except Exception:
pass
import streamlit as st
from PIL import Image
import numpy as np
import subprocess
import time
import tempfile
import os
from ultralytics import YOLO
import cv2 as cv
import pandas as pd
model_path="best.pt"
# --- Page Configuration ---
st.set_page_config(
page_title="Driver Distraction System",
page_icon="π",
layout="wide",
initial_sidebar_state="expanded",
)
# --- Sidebar ---
st.sidebar.title("π Driver Distraction System")
st.sidebar.write("Choose an option below:")
# Sidebar navigation
page = st.sidebar.radio("Select Feature", [
"Distraction System",
"Real-time Drowsiness Detection",
"Video Drowsiness Detection"
])
# --- Class Labels (for YOLO model) ---
class_names = ['drinking', 'hair and makeup', 'operating the radio', 'reaching behind',
'safe driving', 'talking on the phone', 'talking to passenger', 'texting']
# Sidebar Class Name Display
st.sidebar.subheader("Class Names")
for idx, class_name in enumerate(class_names):
st.sidebar.write(f"{idx}: {class_name}")
# --- Feature: YOLO Distraction Detection ---
if page == "Distraction System":
st.title("Driver Distraction System")
st.write("Upload an image or video to detect distractions using YOLO model.")
# File type selection
file_type = st.radio("Select file type:", ["Image", "Video"])
if file_type == "Image":
uploaded_file = st.file_uploader("Upload Image", type=["jpg", "jpeg", "png"])
if uploaded_file is not None:
image = Image.open(uploaded_file).convert('RGB')
image_np = np.array(image)
col1, col2 = st.columns([1, 1])
with col1:
st.subheader("Uploaded Image")
st.image(image, caption="Original Image", use_container_width=True)
with col2:
st.subheader("Detection Results")
model = YOLO(model_path)
start_time = time.time()
results = model(image_np)
end_time = time.time()
prediction_time = end_time - start_time
result = results[0]
if len(result.boxes) > 0:
boxes = result.boxes
confidences = boxes.conf.cpu().numpy()
classes = boxes.cls.cpu().numpy()
class_names_dict = result.names
max_conf_idx = confidences.argmax()
predicted_class = class_names_dict[int(classes[max_conf_idx])]
confidence_score = confidences[max_conf_idx]
st.markdown(f"### Predicted Class: **{predicted_class}**")
st.markdown(f"### Confidence Score: **{confidence_score:.4f}** ({confidence_score*100:.1f}%)")
st.markdown(f"Inference Time: {prediction_time:.2f} seconds")
else:
st.warning("No distractions detected.")
else: # Video processing
uploaded_video = st.file_uploader("Upload Video", type=["mp4", "avi", "mov", "mkv", "webm"])
if uploaded_video is not None:
tfile = tempfile.NamedTemporaryFile(delete=False, suffix=".mp4")
tfile.write(uploaded_video.read())
temp_input_path = tfile.name
temp_output_path = tempfile.mktemp(suffix="_distraction_detected.mp4")
st.subheader("Video Information")
cap = cv.VideoCapture(temp_input_path)
fps = cap.get(cv.CAP_PROP_FPS)
width = int(cap.get(cv.CAP_PROP_FRAME_WIDTH))
height = int(cap.get(cv.CAP_PROP_FRAME_HEIGHT))
total_frames = int(cap.get(cv.CAP_PROP_FRAME_COUNT))
duration = total_frames / fps if fps > 0 else 0
cap.release()
col1, col2 = st.columns(2)
with col1:
st.metric("Duration", f"{duration:.2f} seconds")
st.metric("Original FPS", f"{fps:.2f}")
with col2:
st.metric("Resolution", f"{width}x{height}")
st.metric("Total Frames", total_frames)
st.subheader("Original Video Preview")
st.video(uploaded_video)
if st.button("Process Video for Distraction Detection"):
TARGET_PROCESSING_FPS = 10
# --- NEW: Hyperparameter for the temporal smoothing logic ---
PERSISTENCE_CONFIDENCE_THRESHOLD = 0.40 # Stick with old class if found with >= 40% confidence
st.info(f"π For faster results, video will be processed at ~{TARGET_PROCESSING_FPS} FPS.")
st.info(f"π§ Applying temporal smoothing to reduce status flickering (Persistence Threshold: {PERSISTENCE_CONFIDENCE_THRESHOLD*100:.0f}%).")
progress_bar = st.progress(0, text="Starting video processing...")
with st.spinner(f"Processing video... This may take a while."):
model = YOLO(model_path)
cap = cv.VideoCapture(temp_input_path)
fourcc = cv.VideoWriter_fourcc(*'mp4v')
out = cv.VideoWriter(temp_output_path, fourcc, fps, (width, height))
frame_skip_interval = max(1, round(fps / TARGET_PROCESSING_FPS))
frame_count = 0
last_best_box_coords = None
last_best_box_label = ""
last_status_text = "Status: Initializing..."
last_status_color = (128, 128, 128)
# --- NEW: State variable to store the last confirmed class ---
last_confirmed_class_name = 'safe driving'
while cap.isOpened():
ret, frame = cap.read()
if not ret:
break
frame_count += 1
progress = int((frame_count / total_frames) * 100) if total_frames > 0 else 0
progress_bar.progress(progress, text=f"Analyzing frame {frame_count}/{total_frames}")
annotated_frame = frame.copy()
if frame_count % frame_skip_interval == 0:
results = model(annotated_frame)
result = results[0]
last_best_box_coords = None # Reset box for this processing cycle
if len(result.boxes) > 0:
boxes = result.boxes
class_names_dict = result.names
confidences = boxes.conf.cpu().numpy()
classes = boxes.cls.cpu().numpy()
# --- NEW STABILITY LOGIC ---
final_box_to_use = None
# 1. Check if the last known class exists with reasonable confidence
for i in range(len(boxes)):
current_class_name = class_names_dict[int(classes[i])]
if current_class_name == last_confirmed_class_name and confidences[i] >= PERSISTENCE_CONFIDENCE_THRESHOLD:
final_box_to_use = boxes[i]
break
# 2. If not, fall back to the highest confidence detection in the current frame
if final_box_to_use is None:
max_conf_idx = confidences.argmax()
final_box_to_use = boxes[max_conf_idx]
# --- END OF NEW LOGIC ---
# Now, process the determined "final_box_to_use"
x1, y1, x2, y2 = final_box_to_use.xyxy[0].cpu().numpy()
confidence = final_box_to_use.conf[0].cpu().numpy()
class_id = int(final_box_to_use.cls[0].cpu().numpy())
class_name = class_names_dict[class_id]
# Update the state for the next frames
last_confirmed_class_name = class_name
last_best_box_coords = (int(x1), int(y1), int(x2), int(y2))
last_best_box_label = f"{class_name}: {confidence:.2f}"
if class_name != 'safe driving':
last_status_text = f"Status: {class_name.replace('_', ' ').title()}"
last_status_color = (0, 0, 255)
else:
last_status_text = "Status: Safe Driving"
last_status_color = (0, 128, 0)
else:
# No detections, reset to safe driving
last_confirmed_class_name = 'safe driving'
last_status_text = "Status: Safe Driving"
last_status_color = (0, 128, 0)
# Draw annotations on EVERY frame using the last known data
if last_best_box_coords:
cv.rectangle(annotated_frame, (last_best_box_coords[0], last_best_box_coords[1]),
(last_best_box_coords[2], last_best_box_coords[3]), (0, 255, 0), 2)
cv.putText(annotated_frame, last_best_box_label,
(last_best_box_coords[0], last_best_box_coords[1] - 10),
cv.FONT_HERSHEY_SIMPLEX, 0.9, (0, 255, 0), 2)
# Draw status text
font_scale, font_thickness = 1.0, 2
(text_w, text_h), _ = cv.getTextSize(last_status_text, cv.FONT_HERSHEY_SIMPLEX, font_scale, font_thickness)
padding = 10
rect_start = (padding, padding)
rect_end = (padding + text_w + padding, padding + text_h + padding)
cv.rectangle(annotated_frame, rect_start, rect_end, last_status_color, -1)
text_pos = (padding + 5, padding + text_h + 5)
cv.putText(annotated_frame, last_status_text, text_pos, cv.FONT_HERSHEY_SIMPLEX, font_scale, (255, 255, 255), font_thickness)
out.write(annotated_frame)
cap.release()
out.release()
progress_bar.progress(100, text="Video processing completed!")
st.success("Video processed successfully!")
if os.path.exists(temp_output_path):
with open(temp_output_path, "rb") as file:
video_bytes = file.read()
st.download_button(
label="π₯ Download Processed Video",
data=video_bytes,
file_name=f"distraction_detected_{uploaded_video.name}",
mime="video/mp4",
key="download_distraction_video"
)
st.subheader("Sample Frame from Processed Video")
cap_out = cv.VideoCapture(temp_output_path)
ret, frame = cap_out.read()
if ret:
frame_rgb = cv.cvtColor(frame, cv.COLOR_BGR2RGB)
st.image(frame_rgb, caption="Sample frame with distraction detection", use_container_width=True)
cap_out.release()
try:
os.unlink(temp_input_path)
if os.path.exists(temp_output_path): os.unlink(temp_output_path)
except Exception as e:
st.warning(f"Failed to clean up temporary files: {e}")
# --- Feature: Real-time Drowsiness Detection ---
elif page == "Real-time Drowsiness Detection":
st.title("π§ Real-time Drowsiness Detection")
st.write("This will open your webcam and run the detection script.")
if st.button("Start Drowsiness Detection"):
with st.spinner("Launching webcam..."):
subprocess.Popen(["python3", "drowsiness_detection.py", "--mode", "webcam"])
st.success("Drowsiness detection started in a separate window. Press 'q' in that window to quit.")
# --- Feature: Video Drowsiness Detection ---
elif page == "Video Drowsiness Detection":
st.title("πΉ Video Drowsiness Detection")
st.write("Upload a video file to detect drowsiness and download the processed video.")
uploaded_video = st.file_uploader("Upload Video", type=["mp4", "avi", "mov", "mkv", "webm"])
if uploaded_video is not None:
tfile = tempfile.NamedTemporaryFile(delete=False, suffix=".mp4")
tfile.write(uploaded_video.read())
temp_input_path = tfile.name
temp_output_path = tempfile.mktemp(suffix="_processed.mp4")
st.subheader("Original Video Preview")
st.video(uploaded_video)
if st.button("Process Video for Drowsiness Detection"):
progress_bar = st.progress(0, text="Preparing to process video...")
with st.spinner("Processing video... This may take a while."):
process = subprocess.Popen([
"python3", "drowsiness_detection.py",
"--mode", "video",
"--input", temp_input_path,
"--output", temp_output_path
], stdout=subprocess.PIPE, stderr=subprocess.PIPE, text=True)
stdout, stderr = process.communicate()
if process.returncode == 0:
progress_bar.progress(100, text="Video processing completed!")
if os.path.exists(temp_output_path):
st.success("Video processed successfully!")
if stdout: st.code(stdout)
with open(temp_output_path, "rb") as file: video_bytes = file.read()
st.download_button(
label="π₯ Download Processed Video",
data=video_bytes,
file_name=f"drowsiness_detected_{uploaded_video.name}",
mime="video/mp4",
key="download_processed_video"
)
st.subheader("Sample Frame from Processed Video")
cap = cv.VideoCapture(temp_output_path)
ret, frame = cap.read()
if ret: st.image(cv.cvtColor(frame, cv.COLOR_BGR2RGB), caption="Sample frame with drowsiness detection", use_container_width=True)
cap.release()
else:
st.error("Error: Processed video file not found.")
if stderr: st.code(stderr)
else:
st.error("An error occurred during video processing.")
if stderr: st.code(stderr)
try:
if os.path.exists(temp_input_path): os.unlink(temp_input_path)
if os.path.exists(temp_output_path): os.unlink(temp_output_path)
except Exception as e:
st.warning(f"Failed to clean up temporary files: {e}") |