File size: 7,272 Bytes
530a851
 
 
7317aac
530a851
 
 
 
 
7317aac
530a851
 
 
 
 
 
 
 
 
7317aac
 
 
530a851
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7317aac
530a851
7317aac
 
 
530a851
 
 
7317aac
530a851
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7317aac
 
530a851
7317aac
 
530a851
7317aac
 
 
530a851
 
 
 
7317aac
530a851
7317aac
530a851
7317aac
530a851
 
 
 
7317aac
530a851
 
7317aac
530a851
 
7317aac
 
 
 
 
 
 
530a851
7317aac
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
530a851
7317aac
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
import asyncio
import sys

# --- Boilerplate for compatibility ---
if sys.platform.startswith('linux') and sys.version_info >= (3, 8):
    try:
        asyncio.set_event_loop_policy(asyncio.DefaultEventLoopPolicy())
    except Exception:
        pass

import streamlit as st
from PIL import Image
import numpy as np
import subprocess
import time
import tempfile
import os
from ultralytics import YOLO
import cv2 as cv

# --- NEW: Import your refactored video processing logic ---
from video_processor import process_video_with_progress

model_path="best.pt"

# --- Page Configuration ---
st.set_page_config(
    page_title="Driver Distraction System",
    page_icon="πŸš—",
    layout="wide",
    initial_sidebar_state="expanded",
)

# --- Sidebar ---
st.sidebar.title("πŸš— Driver Distraction System")
st.sidebar.write("Choose an option below:")

# --- Sidebar navigation ---
page = st.sidebar.radio("Select Feature", [
    "Distraction System",
    "Video Drowsiness Detection",
    "Real-time Drowsiness Detection"
])

# --- Class Labels (for YOLO model) ---
st.sidebar.subheader("Class Names")
class_names = ['drinking', 'hair and makeup', 'operating the radio', 'reaching behind',
               'safe driving', 'talking on the phone', 'talking to passenger', 'texting']
for idx, class_name in enumerate(class_names):
    st.sidebar.write(f"{idx}: {class_name}")

# --- Feature: YOLO Distraction Detection ---
if page == "Distraction System":
    st.title("Driver Distraction System")
    st.write("Upload an image or video to detect distractions using YOLO model.")

    # File type selection
    file_type = st.radio("Select file type:", ["Image", "Video"])

    if file_type == "Image":
        uploaded_file = st.file_uploader("Upload Image", type=["jpg", "jpeg", "png"])
        if uploaded_file is not None:
            image = Image.open(uploaded_file).convert('RGB')
            image_np = np.array(image)
            col1, col2 = st.columns([1, 1])
            with col1:
                st.subheader("Uploaded Image")
                st.image(image, caption="Original Image", use_container_width=True)
            with col2:
                st.subheader("Detection Results")
                model = YOLO(model_path)
                start_time = time.time()
                results = model(image_np)
                end_time = time.time()
                prediction_time = end_time - start_time
                result = results[0]
                if len(result.boxes) > 0:
                    boxes = result.boxes
                    confidences = boxes.conf.cpu().numpy()
                    classes = boxes.cls.cpu().numpy()
                    class_names_dict = result.names
                    max_conf_idx = confidences.argmax()
                    predicted_class = class_names_dict[int(classes[max_conf_idx])]
                    confidence_score = confidences[max_conf_idx]
                    st.markdown(f"### Predicted Class: **{predicted_class}**")
                    st.markdown(f"### Confidence Score: **{confidence_score:.4f}**  ({confidence_score*100:.1f}%)")
                    st.markdown(f"Inference Time: {prediction_time:.2f} seconds")
                else:
                    st.warning("No distractions detected.")

# --- Feature: Real-time Drowsiness Detection ---
elif page == "Real-time Drowsiness Detection":
    st.title("🧠 Real-time Drowsiness Detection")
    st.info("This feature requires a local webcam and will open a new window.")
    st.warning("This feature is intended for local use and will not function in the cloud deployment.")
    if st.button("Start Drowsiness Detection"):
        try:
            # This call is fine, as your new drowsiness_detection.py is set up to handle it.
            subprocess.Popen(["python3", "drowsiness_detection.py", "--mode", "webcam"])
            st.success("Attempted to launch detection window. Please check your desktop.")
        except Exception as e:
            st.error(f"Failed to start process: {e}")

# --- Feature: Video Drowsiness Detection ---
elif page == "Video Drowsiness Detection":
    st.title("πŸ“Ή Video Drowsiness Detection")
    st.write("Upload a video file to detect drowsiness and generate a report.")
    uploaded_video = st.file_uploader("Upload Video", type=["mp4", "avi", "mov", "mkv", "webm"])

    if uploaded_video is not None:
        # Create a temporary file to hold the uploaded video
        tfile = tempfile.NamedTemporaryFile(delete=False, suffix=".mp4")
        tfile.write(uploaded_video.read())
        temp_input_path = tfile.name
        temp_output_path = tempfile.mktemp(suffix="_processed.mp4")

        st.subheader("Original Video Preview")
        st.video(uploaded_video)

        if st.button("Process Video for Drowsiness Detection"):
            progress_bar = st.progress(0, text="Preparing to process video...")
            
            # --- NEW: Define a callback function for the progress bar ---
            def streamlit_progress_callback(current, total):
                if total > 0:
                    percent_complete = int((current / total) * 100)
                    progress_bar.progress(percent_complete, text=f"Analyzing frame {current}/{total}...")

            try:
                with st.spinner("Processing video... This may take a while."):
                    # --- NEW: Directly call your robust video processing function ---
                    # No more complex subprocess logic needed!
                    stats = process_video_with_progress(
                        input_path=temp_input_path,
                        output_path=temp_output_path,
                        progress_callback=streamlit_progress_callback
                    )
                
                progress_bar.progress(100, text="Video processing completed!")
                st.success("Video processed successfully!")

                # --- NEW: Display the returned statistics ---
                st.subheader("Detection Results")
                col1, col2, col3 = st.columns(3)
                col1.metric("Drowsy Events", stats.get('drowsy_events', 0))
                col2.metric("Yawn Events", stats.get('yawn_events', 0))
                col3.metric("Head Down Events", stats.get('head_down_events', 0))

                # Offer the processed video for download
                if os.path.exists(temp_output_path):
                    with open(temp_output_path, "rb") as file:
                        video_bytes = file.read()
                    st.download_button(
                        label="πŸ“₯ Download Processed Video",
                        data=video_bytes,
                        file_name=f"drowsiness_detected_{uploaded_video.name}",
                        mime="video/mp4"
                    )
            except Exception as e:
                st.error(f"An error occurred during video processing: {e}")
            finally:
                # Cleanup temporary files
                try:
                    if os.path.exists(temp_input_path): os.unlink(temp_input_path)
                    if os.path.exists(temp_output_path): os.unlink(temp_output_path)
                except Exception as e_clean:
                    st.warning(f"Failed to clean up temporary files: {e_clean}")