File size: 8,103 Bytes
3e098b3
 
530a851
 
 
 
 
 
 
3e098b3
530a851
 
 
3e098b3
 
 
 
 
530a851
 
 
 
 
 
 
3e098b3
 
 
 
 
530a851
 
 
 
 
 
 
3e098b3
530a851
 
3e098b3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
530a851
 
3e098b3
530a851
 
3e098b3
 
 
 
530a851
 
 
 
 
 
3e098b3
 
 
 
530a851
 
 
 
 
 
 
3e098b3
530a851
 
 
 
 
3e098b3
530a851
 
 
 
3e098b3
 
 
530a851
 
 
 
 
3e098b3
530a851
 
 
3e098b3
530a851
 
3e098b3
530a851
 
 
 
 
 
 
 
3e098b3
530a851
3e098b3
 
530a851
 
 
3e098b3
530a851
 
 
 
 
3e098b3
 
530a851
 
 
 
 
 
 
 
3e098b3
 
530a851
 
 
 
 
 
3e098b3
530a851
 
3e098b3
530a851
3e098b3
530a851
 
 
 
 
3e098b3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
530a851
3e098b3
 
530a851
3e098b3
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
# drowsiness_detection.py

from scipy.spatial import distance as dist
from imutils import face_utils
from threading import Thread
import numpy as np
import cv2 as cv
import imutils
import dlib
import pygame
import argparse
import os

# --- MODELS AND CONSTANTS ---
# Use absolute paths relative to this script file for robustness
script_dir = os.path.dirname(os.path.abspath(__file__))
haar_cascade_face_detector = os.path.join(script_dir, "haarcascade_frontalface_default.xml")
dlib_facial_landmark_predictor = os.path.join(script_dir, "shape_predictor_68_face_landmarks.dat")

face_detector = cv.CascadeClassifier(haar_cascade_face_detector)
landmark_predictor = dlib.shape_predictor(dlib_facial_landmark_predictor)

font = cv.FONT_HERSHEY_SIMPLEX
EYE_ASPECT_RATIO_THRESHOLD = 0.25
EYE_CLOSED_THRESHOLD = 20
MOUTH_ASPECT_RATIO_THRESHOLD = 0.5
MOUTH_OPEN_THRESHOLD = 15
FACE_LOST_THRESHOLD = 25

# --- GLOBAL STATE VARIABLES (managed by reset_counters) ---
EYE_THRESH_COUNTER = 0
DROWSY_COUNTER = 0
drowsy_alert = False
YAWN_THRESH_COUNTER = 0
YAWN_COUNTER = 0
yawn_alert = False
FACE_LOST_COUNTER = 0
HEAD_DOWN_COUNTER = 0
head_down_alert = False

# --- LAZY AUDIO INITIALIZATION ---
_audio_initialized = False
_drowsiness_sound = None
_yawn_sound = None

def _initialize_audio():
    """Initializes pygame mixer only when needed and handles errors."""
    global _audio_initialized, _drowsiness_sound, _yawn_sound
    if _audio_initialized:
        return
    try:
        pygame.mixer.init()
        _drowsiness_sound = pygame.mixer.Sound(os.path.join(script_dir, "drowsiness-detected.mp3"))
        _yawn_sound = pygame.mixer.Sound(os.path.join(script_dir, "yawning-detected.mp3"))
        print("Audio initialized successfully.")
    except pygame.error as e:
        print(f"Warning: Could not initialize audio. Alert sounds will be disabled. Error: {e}")
    _audio_initialized = True

def play_alarm(sound_to_play):
    """Plays an alarm sound if the audio system is available."""
    _initialize_audio() # Ensure audio is initialized
    if sound_to_play and not pygame.mixer.get_busy():
        sound_to_play.play()

def generate_alert(final_eye_ratio, final_mouth_ratio):
    global EYE_THRESH_COUNTER, YAWN_THRESH_COUNTER, drowsy_alert, yawn_alert, DROWSY_COUNTER, YAWN_COUNTER
    if final_eye_ratio < EYE_ASPECT_RATIO_THRESHOLD:
        EYE_THRESH_COUNTER += 1
        if EYE_THRESH_COUNTER >= EYE_CLOSED_THRESHOLD and not drowsy_alert:
            DROWSY_COUNTER += 1
            drowsy_alert = True
            Thread(target=play_alarm, args=(_drowsiness_sound,)).start()
    else:
        EYE_THRESH_COUNTER = 0
        drowsy_alert = False

    if final_mouth_ratio > MOUTH_ASPECT_RATIO_THRESHOLD:
        YAWN_THRESH_COUNTER += 1
        if YAWN_THRESH_COUNTER >= MOUTH_OPEN_THRESHOLD and not yawn_alert:
            YAWN_COUNTER += 1
            yawn_alert = True
            Thread(target=play_alarm, args=(_yawn_sound,)).start()
    else:
        YAWN_THRESH_COUNTER = 0
        yawn_alert = False

def detect_facial_landmarks(x, y, w, h, gray_frame):
    face = dlib.rectangle(int(x), int(y), int(x + w), int(y + h))
    face_landmarks = landmark_predictor(gray_frame, face)
    return face_utils.shape_to_np(face_landmarks)

def eye_aspect_ratio(eye):
    A = dist.euclidean(eye[1], eye[5])
    B = dist.euclidean(eye[2], eye[4])
    C = dist.euclidean(eye[0], eye[3])
    return (A + B) / (2.0 * C)

def final_eye_aspect_ratio(shape):
    (lStart, lEnd) = face_utils.FACIAL_LANDMARKS_IDXS["left_eye"]
    (rStart, rEnd) = face_utils.FACIAL_LANDMARKS_IDXS["right_eye"]
    left_ear = eye_aspect_ratio(shape[lStart:lEnd])
    right_ear = eye_aspect_ratio(shape[rStart:rEnd])
    return (left_ear + right_ear) / 2.0

def mouth_aspect_ratio(mouth):
    A = dist.euclidean(mouth[2], mouth[10])
    B = dist.euclidean(mouth[4], mouth[8])
    C = dist.euclidean(mouth[0], mouth[6])
    return (A + B) / (2.0 * C)

def final_mouth_aspect_ratio(shape):
    (mStart, mEnd) = face_utils.FACIAL_LANDMARKS_IDXS["mouth"]
    return mouth_aspect_ratio(shape[mStart:mEnd])

def reset_counters():
    """Resets all global counters and alerts for a new processing session."""
    global EYE_THRESH_COUNTER, YAWN_THRESH_COUNTER, FACE_LOST_COUNTER
    global DROWSY_COUNTER, YAWN_COUNTER, HEAD_DOWN_COUNTER
    global drowsy_alert, yawn_alert, head_down_alert
    EYE_THRESH_COUNTER, YAWN_THRESH_COUNTER, FACE_LOST_COUNTER = 0, 0, 0
    DROWSY_COUNTER, YAWN_COUNTER, HEAD_DOWN_COUNTER = 0, 0, 0
    drowsy_alert, yawn_alert, head_down_alert = False, False, False

def process_frame(frame):
    """Processes a single frame to detect drowsiness, yawns, and head position."""
    global FACE_LOST_COUNTER, head_down_alert, HEAD_DOWN_COUNTER
    
    # The output frame will have a fixed width of 640px
    frame = imutils.resize(frame, width=640)
    gray_frame = cv.cvtColor(frame, cv.COLOR_BGR2GRAY)
    faces = face_detector.detectMultiScale(gray_frame, scaleFactor=1.1, minNeighbors=5, minSize=(30, 30), flags=cv.CASCADE_SCALE_IMAGE)

    if len(faces) > 0:
        FACE_LOST_COUNTER = 0
        head_down_alert = False
        (x, y, w, h) = faces[0]
        face_landmarks = detect_facial_landmarks(x, y, w, h, gray_frame)
        final_ear = final_eye_aspect_ratio(face_landmarks)
        final_mar = final_mouth_aspect_ratio(face_landmarks)
        generate_alert(final_ear, final_mar)
        cv.putText(frame, f"EAR: {final_ear:.2f}", (10, 30), font, 0.7, (0, 0, 255), 2)
        cv.putText(frame, f"MAR: {final_mar:.2f}", (10, 60), font, 0.7, (0, 0, 255), 2)
    else:
        FACE_LOST_COUNTER += 1
        if FACE_LOST_COUNTER >= FACE_LOST_THRESHOLD and not head_down_alert:
            HEAD_DOWN_COUNTER += 1
            head_down_alert = True
            
    # Draw status text
    cv.putText(frame, f"Drowsy: {DROWSY_COUNTER}", (480, 30), font, 0.7, (255, 255, 0), 2)
    cv.putText(frame, f"Yawn: {YAWN_COUNTER}", (480, 60), font, 0.7, (255, 255, 0), 2)
    cv.putText(frame, f"Head Down: {HEAD_DOWN_COUNTER}", (480, 90), font, 0.7, (255, 255, 0), 2)
    if drowsy_alert: cv.putText(frame, "DROWSINESS ALERT!", (150, 30), font, 0.9, (0, 0, 255), 2)
    if yawn_alert: cv.putText(frame, "YAWN ALERT!", (200, 60), font, 0.9, (0, 0, 255), 2)
    if head_down_alert: cv.putText(frame, "HEAD NOT VISIBLE!", (180, 90), font, 0.9, (0, 0, 255), 2)
    
    return frame

# --- Command-line execution for local testing ---
if __name__ == "__main__":
    parser = argparse.ArgumentParser(description='Drowsiness Detection System (Local Runner)')
    parser.add_argument('--mode', choices=['webcam', 'video'], default='webcam', help='Mode of operation')
    parser.add_argument('--input', type=str, help='Input video file path for video mode')
    args = parser.parse_args()
    
    if args.mode == 'webcam':
        print("Starting webcam detection... Press 'q' to quit.")
        cap = cv.VideoCapture(0)
        if not cap.isOpened():
            print("Error: Could not open webcam.")
        else:
            reset_counters()
            while True:
                ret, frame = cap.read()
                if not ret: break
                processed_frame = process_frame(frame)
                cv.imshow("Live Drowsiness Detection", processed_frame)
                if cv.waitKey(1) & 0xFF == ord('q'): break
            cap.release()
            cv.destroyAllWindows()
            
    elif args.mode == 'video':
        if not args.input or not os.path.exists(args.input):
            print("Error: Please provide a valid --input video file path.")
        else:
            from video_processor import process_video_with_progress
            output_file = args.input.replace('.mp4', '_processed.mp4')
            print(f"Processing video {args.input}, output will be {output_file}")
            
            def cli_progress(current, total):
                percent = int((current / total) * 100)
                print(f"\rProcessing: {percent}%", end="")

            process_video_with_progress(args.input, output_file, progress_callback=cli_progress)
            print("\nDone.")