Update app.py
Browse files
app.py
CHANGED
@@ -4,26 +4,12 @@ import seaborn as sns
|
|
4 |
import numpy as np
|
5 |
import pickle
|
6 |
import matplotlib.pyplot as plt
|
7 |
-
from data_preparation import preprocess_data
|
8 |
-
from clustering import perform_clustering, plot_clusters
|
9 |
from feature_selection import select_features_pca, select_features_rfe, select_features_rf
|
10 |
from sklearn.preprocessing import StandardScaler
|
11 |
-
|
12 |
-
|
13 |
-
"FirstPolYear": "Year when the customer first bought an insurance policy.",
|
14 |
-
"BirthYear": "Birth year of the customer, used to calculate age.",
|
15 |
-
"EducDeg": "Highest educational degree obtained by the customer.",
|
16 |
-
"MonthSal": "Monthly salary of the customer. (Numerical, float64)",
|
17 |
-
"GeoLivArea": "Geographical area where the customer lives.",
|
18 |
-
"Children": "Number of children the customer has.",
|
19 |
-
"CustMonVal": "Total monetary value of the customer to the company.",
|
20 |
-
"ClaimsRate": "Rate at which the customer files insurance claims.",
|
21 |
-
"PremMotor": "Premium amount for motor insurance.",
|
22 |
-
"PremHousehold": "Premium amount for household insurance.",
|
23 |
-
"PremHealth": "Premium amount for health insurance.",
|
24 |
-
"PremLife": "Premium amount for life insurance.",
|
25 |
-
"PremWork": "Premium amount for work insurance."
|
26 |
-
}
|
27 |
|
28 |
def load_data(dataset_choice):
|
29 |
if dataset_choice == "Insurance":
|
@@ -33,13 +19,6 @@ def load_data(dataset_choice):
|
|
33 |
elif dataset_choice == "Banking":
|
34 |
data = pd.read_csv('bankingdata.csv', encoding='latin1')
|
35 |
return data
|
36 |
-
|
37 |
-
return data
|
38 |
-
# Function to summarize cluster characteristics
|
39 |
-
def summarize_cluster_characteristics(clustered_data, labels, cluster_number):
|
40 |
-
cluster_data = clustered_data[labels == cluster_number]
|
41 |
-
summary = cluster_data.mean().to_dict()
|
42 |
-
return summary
|
43 |
|
44 |
# Function to display Business Understanding section
|
45 |
def display_business_understanding():
|
@@ -70,8 +49,9 @@ def display_dataset_selection():
|
|
70 |
if dataset_choice=="Insurance":
|
71 |
st.write(feature_descriptions)
|
72 |
return data
|
|
|
73 |
# Function to display Modeling & Evaluation section
|
74 |
-
def display_modeling_evaluation():
|
75 |
dataset_choice = st.selectbox("Select Dataset", ("Insurance", "Retail", "Banking"))
|
76 |
data = load_data(dataset_choice)
|
77 |
data = preprocess_data(data)
|
@@ -119,7 +99,18 @@ def display_modeling_evaluation():
|
|
119 |
with st.form(key='prediction_form'):
|
120 |
user_input = {}
|
121 |
for feature in st.session_state.selected_features:
|
122 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
123 |
|
124 |
submit_button = st.form_submit_button(label='Predict')
|
125 |
|
|
|
4 |
import numpy as np
|
5 |
import pickle
|
6 |
import matplotlib.pyplot as plt
|
7 |
+
from data_preparation import preprocess_data,data_imp
|
8 |
+
from clustering import perform_clustering, plot_clusters,,summarize_cluster_characteristics
|
9 |
from feature_selection import select_features_pca, select_features_rfe, select_features_rf
|
10 |
from sklearn.preprocessing import StandardScaler
|
11 |
+
|
12 |
+
feature_descriptions,insurance_defaults,banking_defaults,retail_defaults=data_imp()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
|
14 |
def load_data(dataset_choice):
|
15 |
if dataset_choice == "Insurance":
|
|
|
19 |
elif dataset_choice == "Banking":
|
20 |
data = pd.read_csv('bankingdata.csv', encoding='latin1')
|
21 |
return data
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
22 |
|
23 |
# Function to display Business Understanding section
|
24 |
def display_business_understanding():
|
|
|
49 |
if dataset_choice=="Insurance":
|
50 |
st.write(feature_descriptions)
|
51 |
return data
|
52 |
+
|
53 |
# Function to display Modeling & Evaluation section
|
54 |
+
def display_modeling_evaluation(insurance_defaults,banking_defaults,retail_defaults):
|
55 |
dataset_choice = st.selectbox("Select Dataset", ("Insurance", "Retail", "Banking"))
|
56 |
data = load_data(dataset_choice)
|
57 |
data = preprocess_data(data)
|
|
|
99 |
with st.form(key='prediction_form'):
|
100 |
user_input = {}
|
101 |
for feature in st.session_state.selected_features:
|
102 |
+
|
103 |
+
# Set default values based on the dataset choice
|
104 |
+
if dataset_choice == "Insurance":
|
105 |
+
default_value = insurance_defaults.get(feature, 0.0)
|
106 |
+
elif dataset_choice == "Banking":
|
107 |
+
default_value = banking_defaults.get(feature, 0.0)
|
108 |
+
elif dataset_choice == "Retail":
|
109 |
+
default_value = retail_defaults.get(feature, 0.0)
|
110 |
+
else:
|
111 |
+
default_value = 0.0
|
112 |
+
|
113 |
+
user_input[feature] = st.number_input(f'Enter {feature}', value=default_value)
|
114 |
|
115 |
submit_button = st.form_submit_button(label='Predict')
|
116 |
|