File size: 3,232 Bytes
0a4a484
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
import pandas as pd
import numpy as np
def data_imp():
    feature_descriptions = {
    "CustID": "Unique identifier for each customer.",
    "FirstPolYear": "Year when the customer first bought an insurance policy.",
    "BirthYear": "Birth year of the customer, used to calculate age.",
    "EducDeg": "Highest educational degree obtained by the customer.",
    "MonthSal": "Monthly salary of the customer. (Numerical, float64)",
    "GeoLivArea": "Geographical area where the customer lives.",
    "Children": "Number of children the customer has.",
    "CustMonVal": "Total monetary value of the customer to the company.",
    "ClaimsRate": "Rate at which the customer files insurance claims.",
    "PremMotor": "Premium amount for motor insurance.",
    "PremHousehold": "Premium amount for household insurance.",
    "PremHealth": "Premium amount for health insurance.",
    "PremLife": "Premium amount for life insurance.",
    "PremWork": "Premium amount for work insurance."
    }
    insurance_defaults = {
                "FirstPolYear": 1999,
                "BirthYear": 1980,
                "MonthSal": 1000,
                "GeoLivArea": 0,  # Options: 0, 1, 2, 3
                "Children": 0,  # Options: 0, 1, 2
                "CustMonVal": 100,
                "ClaimsRate": 2.33,
                "PremMotor": 200,
                "PremHousehold": 200,
                "PremHealth": 200,
                "PremLife": 200,
                "PremWork": 200
            }

            # Define default values for banking dataset features
    banking_defaults = {
                "BALANCE": 2000,
                "BALANCE_FREQUENCY": 0.5,
                "PURCHASES": 500,
                "ONEOFF_PURCHASES": 0,
                "INSTALLMENTS_PURCHASES": 0,
                "CASH_ADVANCE": 200,
                "PURCHASES_FREQUENCY": 0.1,
                "ONEOFF_PURCHASES_FREQUENCY": 0.1,
                "PURCHASES_INSTALLMENTS_FREQUENCY": 0.5,
                "CASH_ADVANCE_FREQUENCY": 5,
                "CASH_ADVANCE_TRX": 5,
                "PURCHASES_TRX": 5,
                "CREDIT_LIMIT": 10000,
                "PAYMENTS": 500,
                "MINIMUM_PAYMENTS": 130,
                "PRC_FULL_PAYMENT": 0.22,
                "TENURE": 10
            }

            # Define default values for retail dataset features
    retail_defaults = {
                "Fresh": 6000,
                "Milk": 9000,
                "Grocery": 9000,
                "Frozen": 4000,
                "Detergents_Paper": 4000,
                "Delicassen": 2000
            }
    return feature_descriptions,insurance_defaults,banking_defaults,retail_defaults

def preprocess_data(data):
    if 'CustID' in data.columns:
        data = data.drop(columns=['CustID'])
    if 'Channel' in data.columns:
        data = data.drop(columns=['Channel'])
    if 'Region' in data.columns:
        data = data.drop(columns=['Region'])
    

    data = remove_outliers(data)
    return data

def remove_outliers(df, threshold=3):
    df_numeric = df.select_dtypes(include=[float, int])
    z_scores = np.abs((df_numeric - df_numeric.mean()) / df_numeric.std())
    df_clean = df[(z_scores < threshold).all(axis=1)]
    return df_clean