Spaces:
				
			
			
	
			
			
		Runtime error
		
	
	
	
			
			
	
	
	
	
		
		
		Runtime error
		
	
		LIU, Zichen
		
	commited on
		
		
					Commit 
							
							·
						
						1a1aace
	
1
								Parent(s):
							
							78fe60c
								
update missing files
Browse files
    	
        MagicQuill/comfy/ldm/models/__pycache__/autoencoder.cpython-310.pyc
    ADDED
    
    | Binary file (8.43 kB). View file | 
|  | 
    	
        MagicQuill/comfy/ldm/models/autoencoder.py
    ADDED
    
    | @@ -0,0 +1,226 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            import torch
         | 
| 2 | 
            +
            from contextlib import contextmanager
         | 
| 3 | 
            +
            from typing import Any, Dict, List, Optional, Tuple, Union
         | 
| 4 | 
            +
             | 
| 5 | 
            +
            from comfy.ldm.modules.distributions.distributions import DiagonalGaussianDistribution
         | 
| 6 | 
            +
             | 
| 7 | 
            +
            from comfy.ldm.util import instantiate_from_config
         | 
| 8 | 
            +
            from comfy.ldm.modules.ema import LitEma
         | 
| 9 | 
            +
            import comfy.ops
         | 
| 10 | 
            +
             | 
| 11 | 
            +
            class DiagonalGaussianRegularizer(torch.nn.Module):
         | 
| 12 | 
            +
                def __init__(self, sample: bool = True):
         | 
| 13 | 
            +
                    super().__init__()
         | 
| 14 | 
            +
                    self.sample = sample
         | 
| 15 | 
            +
             | 
| 16 | 
            +
                def get_trainable_parameters(self) -> Any:
         | 
| 17 | 
            +
                    yield from ()
         | 
| 18 | 
            +
             | 
| 19 | 
            +
                def forward(self, z: torch.Tensor) -> Tuple[torch.Tensor, dict]:
         | 
| 20 | 
            +
                    log = dict()
         | 
| 21 | 
            +
                    posterior = DiagonalGaussianDistribution(z)
         | 
| 22 | 
            +
                    if self.sample:
         | 
| 23 | 
            +
                        z = posterior.sample()
         | 
| 24 | 
            +
                    else:
         | 
| 25 | 
            +
                        z = posterior.mode()
         | 
| 26 | 
            +
                    kl_loss = posterior.kl()
         | 
| 27 | 
            +
                    kl_loss = torch.sum(kl_loss) / kl_loss.shape[0]
         | 
| 28 | 
            +
                    log["kl_loss"] = kl_loss
         | 
| 29 | 
            +
                    return z, log
         | 
| 30 | 
            +
             | 
| 31 | 
            +
             | 
| 32 | 
            +
            class AbstractAutoencoder(torch.nn.Module):
         | 
| 33 | 
            +
                """
         | 
| 34 | 
            +
                This is the base class for all autoencoders, including image autoencoders, image autoencoders with discriminators,
         | 
| 35 | 
            +
                unCLIP models, etc. Hence, it is fairly general, and specific features
         | 
| 36 | 
            +
                (e.g. discriminator training, encoding, decoding) must be implemented in subclasses.
         | 
| 37 | 
            +
                """
         | 
| 38 | 
            +
             | 
| 39 | 
            +
                def __init__(
         | 
| 40 | 
            +
                    self,
         | 
| 41 | 
            +
                    ema_decay: Union[None, float] = None,
         | 
| 42 | 
            +
                    monitor: Union[None, str] = None,
         | 
| 43 | 
            +
                    input_key: str = "jpg",
         | 
| 44 | 
            +
                    **kwargs,
         | 
| 45 | 
            +
                ):
         | 
| 46 | 
            +
                    super().__init__()
         | 
| 47 | 
            +
             | 
| 48 | 
            +
                    self.input_key = input_key
         | 
| 49 | 
            +
                    self.use_ema = ema_decay is not None
         | 
| 50 | 
            +
                    if monitor is not None:
         | 
| 51 | 
            +
                        self.monitor = monitor
         | 
| 52 | 
            +
             | 
| 53 | 
            +
                    if self.use_ema:
         | 
| 54 | 
            +
                        self.model_ema = LitEma(self, decay=ema_decay)
         | 
| 55 | 
            +
                        logpy.info(f"Keeping EMAs of {len(list(self.model_ema.buffers()))}.")
         | 
| 56 | 
            +
             | 
| 57 | 
            +
                def get_input(self, batch) -> Any:
         | 
| 58 | 
            +
                    raise NotImplementedError()
         | 
| 59 | 
            +
             | 
| 60 | 
            +
                def on_train_batch_end(self, *args, **kwargs):
         | 
| 61 | 
            +
                    # for EMA computation
         | 
| 62 | 
            +
                    if self.use_ema:
         | 
| 63 | 
            +
                        self.model_ema(self)
         | 
| 64 | 
            +
             | 
| 65 | 
            +
                @contextmanager
         | 
| 66 | 
            +
                def ema_scope(self, context=None):
         | 
| 67 | 
            +
                    if self.use_ema:
         | 
| 68 | 
            +
                        self.model_ema.store(self.parameters())
         | 
| 69 | 
            +
                        self.model_ema.copy_to(self)
         | 
| 70 | 
            +
                        if context is not None:
         | 
| 71 | 
            +
                            logpy.info(f"{context}: Switched to EMA weights")
         | 
| 72 | 
            +
                    try:
         | 
| 73 | 
            +
                        yield None
         | 
| 74 | 
            +
                    finally:
         | 
| 75 | 
            +
                        if self.use_ema:
         | 
| 76 | 
            +
                            self.model_ema.restore(self.parameters())
         | 
| 77 | 
            +
                            if context is not None:
         | 
| 78 | 
            +
                                logpy.info(f"{context}: Restored training weights")
         | 
| 79 | 
            +
             | 
| 80 | 
            +
                def encode(self, *args, **kwargs) -> torch.Tensor:
         | 
| 81 | 
            +
                    raise NotImplementedError("encode()-method of abstract base class called")
         | 
| 82 | 
            +
             | 
| 83 | 
            +
                def decode(self, *args, **kwargs) -> torch.Tensor:
         | 
| 84 | 
            +
                    raise NotImplementedError("decode()-method of abstract base class called")
         | 
| 85 | 
            +
             | 
| 86 | 
            +
                def instantiate_optimizer_from_config(self, params, lr, cfg):
         | 
| 87 | 
            +
                    logpy.info(f"loading >>> {cfg['target']} <<< optimizer from config")
         | 
| 88 | 
            +
                    return get_obj_from_str(cfg["target"])(
         | 
| 89 | 
            +
                        params, lr=lr, **cfg.get("params", dict())
         | 
| 90 | 
            +
                    )
         | 
| 91 | 
            +
             | 
| 92 | 
            +
                def configure_optimizers(self) -> Any:
         | 
| 93 | 
            +
                    raise NotImplementedError()
         | 
| 94 | 
            +
             | 
| 95 | 
            +
             | 
| 96 | 
            +
            class AutoencodingEngine(AbstractAutoencoder):
         | 
| 97 | 
            +
                """
         | 
| 98 | 
            +
                Base class for all image autoencoders that we train, like VQGAN or AutoencoderKL
         | 
| 99 | 
            +
                (we also restore them explicitly as special cases for legacy reasons).
         | 
| 100 | 
            +
                Regularizations such as KL or VQ are moved to the regularizer class.
         | 
| 101 | 
            +
                """
         | 
| 102 | 
            +
             | 
| 103 | 
            +
                def __init__(
         | 
| 104 | 
            +
                    self,
         | 
| 105 | 
            +
                    *args,
         | 
| 106 | 
            +
                    encoder_config: Dict,
         | 
| 107 | 
            +
                    decoder_config: Dict,
         | 
| 108 | 
            +
                    regularizer_config: Dict,
         | 
| 109 | 
            +
                    **kwargs,
         | 
| 110 | 
            +
                ):
         | 
| 111 | 
            +
                    super().__init__(*args, **kwargs)
         | 
| 112 | 
            +
             | 
| 113 | 
            +
                    self.encoder: torch.nn.Module = instantiate_from_config(encoder_config)
         | 
| 114 | 
            +
                    self.decoder: torch.nn.Module = instantiate_from_config(decoder_config)
         | 
| 115 | 
            +
                    self.regularization: AbstractRegularizer = instantiate_from_config(
         | 
| 116 | 
            +
                        regularizer_config
         | 
| 117 | 
            +
                    )
         | 
| 118 | 
            +
             | 
| 119 | 
            +
                def get_last_layer(self):
         | 
| 120 | 
            +
                    return self.decoder.get_last_layer()
         | 
| 121 | 
            +
             | 
| 122 | 
            +
                def encode(
         | 
| 123 | 
            +
                    self,
         | 
| 124 | 
            +
                    x: torch.Tensor,
         | 
| 125 | 
            +
                    return_reg_log: bool = False,
         | 
| 126 | 
            +
                    unregularized: bool = False,
         | 
| 127 | 
            +
                ) -> Union[torch.Tensor, Tuple[torch.Tensor, dict]]:
         | 
| 128 | 
            +
                    z = self.encoder(x)
         | 
| 129 | 
            +
                    if unregularized:
         | 
| 130 | 
            +
                        return z, dict()
         | 
| 131 | 
            +
                    z, reg_log = self.regularization(z)
         | 
| 132 | 
            +
                    if return_reg_log:
         | 
| 133 | 
            +
                        return z, reg_log
         | 
| 134 | 
            +
                    return z
         | 
| 135 | 
            +
             | 
| 136 | 
            +
                def decode(self, z: torch.Tensor, **kwargs) -> torch.Tensor:
         | 
| 137 | 
            +
                    x = self.decoder(z, **kwargs)
         | 
| 138 | 
            +
                    return x
         | 
| 139 | 
            +
             | 
| 140 | 
            +
                def forward(
         | 
| 141 | 
            +
                    self, x: torch.Tensor, **additional_decode_kwargs
         | 
| 142 | 
            +
                ) -> Tuple[torch.Tensor, torch.Tensor, dict]:
         | 
| 143 | 
            +
                    z, reg_log = self.encode(x, return_reg_log=True)
         | 
| 144 | 
            +
                    dec = self.decode(z, **additional_decode_kwargs)
         | 
| 145 | 
            +
                    return z, dec, reg_log
         | 
| 146 | 
            +
             | 
| 147 | 
            +
             | 
| 148 | 
            +
            class AutoencodingEngineLegacy(AutoencodingEngine):
         | 
| 149 | 
            +
                def __init__(self, embed_dim: int, **kwargs):
         | 
| 150 | 
            +
                    self.max_batch_size = kwargs.pop("max_batch_size", None)
         | 
| 151 | 
            +
                    ddconfig = kwargs.pop("ddconfig")
         | 
| 152 | 
            +
                    super().__init__(
         | 
| 153 | 
            +
                        encoder_config={
         | 
| 154 | 
            +
                            "target": "comfy.ldm.modules.diffusionmodules.model.Encoder",
         | 
| 155 | 
            +
                            "params": ddconfig,
         | 
| 156 | 
            +
                        },
         | 
| 157 | 
            +
                        decoder_config={
         | 
| 158 | 
            +
                            "target": "comfy.ldm.modules.diffusionmodules.model.Decoder",
         | 
| 159 | 
            +
                            "params": ddconfig,
         | 
| 160 | 
            +
                        },
         | 
| 161 | 
            +
                        **kwargs,
         | 
| 162 | 
            +
                    )
         | 
| 163 | 
            +
                    self.quant_conv = comfy.ops.disable_weight_init.Conv2d(
         | 
| 164 | 
            +
                        (1 + ddconfig["double_z"]) * ddconfig["z_channels"],
         | 
| 165 | 
            +
                        (1 + ddconfig["double_z"]) * embed_dim,
         | 
| 166 | 
            +
                        1,
         | 
| 167 | 
            +
                    )
         | 
| 168 | 
            +
                    self.post_quant_conv = comfy.ops.disable_weight_init.Conv2d(embed_dim, ddconfig["z_channels"], 1)
         | 
| 169 | 
            +
                    self.embed_dim = embed_dim
         | 
| 170 | 
            +
             | 
| 171 | 
            +
                def get_autoencoder_params(self) -> list:
         | 
| 172 | 
            +
                    params = super().get_autoencoder_params()
         | 
| 173 | 
            +
                    return params
         | 
| 174 | 
            +
             | 
| 175 | 
            +
                def encode(
         | 
| 176 | 
            +
                    self, x: torch.Tensor, return_reg_log: bool = False
         | 
| 177 | 
            +
                ) -> Union[torch.Tensor, Tuple[torch.Tensor, dict]]:
         | 
| 178 | 
            +
                    if self.max_batch_size is None:
         | 
| 179 | 
            +
                        z = self.encoder(x)
         | 
| 180 | 
            +
                        z = self.quant_conv(z)
         | 
| 181 | 
            +
                    else:
         | 
| 182 | 
            +
                        N = x.shape[0]
         | 
| 183 | 
            +
                        bs = self.max_batch_size
         | 
| 184 | 
            +
                        n_batches = int(math.ceil(N / bs))
         | 
| 185 | 
            +
                        z = list()
         | 
| 186 | 
            +
                        for i_batch in range(n_batches):
         | 
| 187 | 
            +
                            z_batch = self.encoder(x[i_batch * bs : (i_batch + 1) * bs])
         | 
| 188 | 
            +
                            z_batch = self.quant_conv(z_batch)
         | 
| 189 | 
            +
                            z.append(z_batch)
         | 
| 190 | 
            +
                        z = torch.cat(z, 0)
         | 
| 191 | 
            +
             | 
| 192 | 
            +
                    z, reg_log = self.regularization(z)
         | 
| 193 | 
            +
                    if return_reg_log:
         | 
| 194 | 
            +
                        return z, reg_log
         | 
| 195 | 
            +
                    return z
         | 
| 196 | 
            +
             | 
| 197 | 
            +
                def decode(self, z: torch.Tensor, **decoder_kwargs) -> torch.Tensor:
         | 
| 198 | 
            +
                    if self.max_batch_size is None:
         | 
| 199 | 
            +
                        dec = self.post_quant_conv(z)
         | 
| 200 | 
            +
                        dec = self.decoder(dec, **decoder_kwargs)
         | 
| 201 | 
            +
                    else:
         | 
| 202 | 
            +
                        N = z.shape[0]
         | 
| 203 | 
            +
                        bs = self.max_batch_size
         | 
| 204 | 
            +
                        n_batches = int(math.ceil(N / bs))
         | 
| 205 | 
            +
                        dec = list()
         | 
| 206 | 
            +
                        for i_batch in range(n_batches):
         | 
| 207 | 
            +
                            dec_batch = self.post_quant_conv(z[i_batch * bs : (i_batch + 1) * bs])
         | 
| 208 | 
            +
                            dec_batch = self.decoder(dec_batch, **decoder_kwargs)
         | 
| 209 | 
            +
                            dec.append(dec_batch)
         | 
| 210 | 
            +
                        dec = torch.cat(dec, 0)
         | 
| 211 | 
            +
             | 
| 212 | 
            +
                    return dec
         | 
| 213 | 
            +
             | 
| 214 | 
            +
             | 
| 215 | 
            +
            class AutoencoderKL(AutoencodingEngineLegacy):
         | 
| 216 | 
            +
                def __init__(self, **kwargs):
         | 
| 217 | 
            +
                    if "lossconfig" in kwargs:
         | 
| 218 | 
            +
                        kwargs["loss_config"] = kwargs.pop("lossconfig")
         | 
| 219 | 
            +
                    super().__init__(
         | 
| 220 | 
            +
                        regularizer_config={
         | 
| 221 | 
            +
                            "target": (
         | 
| 222 | 
            +
                                "comfy.ldm.models.autoencoder.DiagonalGaussianRegularizer"
         | 
| 223 | 
            +
                            )
         | 
| 224 | 
            +
                        },
         | 
| 225 | 
            +
                        **kwargs,
         | 
| 226 | 
            +
                    )
         | 
 
			
