Spaces:
Running
on
Zero
Running
on
Zero
File size: 16,695 Bytes
d4733f5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 |
import os
import folder_paths
import comfy.diffusers_load
import comfy.samplers
import comfy.sample
import comfy.sd
import comfy.utils
import comfy.controlnet
import comfy.clip_vision
import comfy.model_management
from comfy.cli_args import args
import torch
import torch.nn as nn
import numpy as np
import latent_preview
from PIL import Image
from einops import rearrange
import scipy.ndimage
import sys
import cv2
from magic_utils import HWC3, apply_color, common_input_validate, resize_image_with_pad
from pidi import pidinet
supported_pt_extensions = set(['.ckpt', '.pt', '.bin', '.pth', '.safetensors', '.pkl'])
folder_names_and_paths = {}
base_path = os.path.dirname(os.path.realpath(__file__))
models_dir = os.path.join(base_path, "../models")
folder_names_and_paths["checkpoints"] = ([os.path.join(models_dir, "checkpoints")], supported_pt_extensions)
folder_names_and_paths["configs"] = ([os.path.join(models_dir, "configs")], [".yaml"])
folder_names_and_paths["loras"] = ([os.path.join(models_dir, "loras")], supported_pt_extensions)
folder_names_and_paths["vae"] = ([os.path.join(models_dir, "vae")], supported_pt_extensions)
folder_names_and_paths["clip"] = ([os.path.join(models_dir, "clip")], supported_pt_extensions)
folder_names_and_paths["unet"] = ([os.path.join(models_dir, "unet")], supported_pt_extensions)
folder_names_and_paths["clip_vision"] = ([os.path.join(models_dir, "clip_vision")], supported_pt_extensions)
folder_names_and_paths["style_models"] = ([os.path.join(models_dir, "style_models")], supported_pt_extensions)
folder_names_and_paths["embeddings"] = ([os.path.join(models_dir, "embeddings")], supported_pt_extensions)
folder_names_and_paths["diffusers"] = ([os.path.join(models_dir, "diffusers")], ["folder"])
folder_names_and_paths["vae_approx"] = ([os.path.join(models_dir, "vae_approx")], supported_pt_extensions)
folder_names_and_paths["controlnet"] = ([os.path.join(models_dir, "controlnet"), os.path.join(models_dir, "t2i_adapter")], supported_pt_extensions)
folder_names_and_paths["gligen"] = ([os.path.join(models_dir, "gligen")], supported_pt_extensions)
folder_names_and_paths["upscale_models"] = ([os.path.join(models_dir, "upscale_models")], supported_pt_extensions)
folder_names_and_paths["hypernetworks"] = ([os.path.join(models_dir, "hypernetworks")], supported_pt_extensions)
folder_names_and_paths["photomaker"] = ([os.path.join(models_dir, "photomaker")], supported_pt_extensions)
folder_names_and_paths["classifiers"] = ([os.path.join(models_dir, "classifiers")], {""})
def common_annotator_call(model, tensor_image, input_batch=False, show_pbar=True, **kwargs):
if "detect_resolution" in kwargs:
del kwargs["detect_resolution"] #Prevent weird case?
if "resolution" in kwargs:
detect_resolution = kwargs["resolution"] if type(kwargs["resolution"]) == int and kwargs["resolution"] >= 64 else 512
del kwargs["resolution"]
else:
detect_resolution = 512
if input_batch:
np_images = np.asarray(tensor_image * 255., dtype=np.uint8)
np_results = model(np_images, output_type="np", detect_resolution=detect_resolution, **kwargs)
return torch.from_numpy(np_results.astype(np.float32) / 255.0)
batch_size = tensor_image.shape[0]
if show_pbar:
pbar = comfy.utils.ProgressBar(batch_size)
out_tensor = None
for i, image in enumerate(tensor_image):
np_image = np.asarray(image.cpu() * 255., dtype=np.uint8)
np_result = model(np_image, output_type="np", detect_resolution=detect_resolution, **kwargs)
out = torch.from_numpy(np_result.astype(np.float32) / 255.0)
if out_tensor is None:
out_tensor = torch.zeros(batch_size, *out.shape, dtype=torch.float32)
out_tensor[i] = out
if show_pbar:
pbar.update(1)
return out_tensor
class CheckpointLoaderSimple:
def load_checkpoint(self, ckpt_name):
ckpt_path = folder_paths.get_full_path("checkpoints", ckpt_name)
print("Loading checkpoint from:", ckpt_path)
out = comfy.sd.load_checkpoint_guess_config(ckpt_path, output_vae=True, output_clip=True, embedding_directory=folder_paths.get_folder_paths("embeddings"))
return out[:3]
class ControlNetLoader:
def load_controlnet(self, control_net_name):
controlnet_path = folder_paths.get_full_path("controlnet", control_net_name)
controlnet = comfy.controlnet.load_controlnet(controlnet_path)
return (controlnet, )
class ControlNetApplyAdvanced:
def apply_controlnet(self, positive, negative, control_net, image, strength, start_percent, end_percent):
if strength == 0:
return (positive, negative)
control_hint = image.movedim(-1,1)
cnets = {}
out = []
for conditioning in [positive, negative]:
c = []
for t in conditioning:
d = t[1].copy()
prev_cnet = d.get('control', None)
if prev_cnet in cnets:
c_net = cnets[prev_cnet]
else:
c_net = control_net.copy().set_cond_hint(control_hint, strength, (start_percent, end_percent))
c_net.set_previous_controlnet(prev_cnet)
cnets[prev_cnet] = c_net
d['control'] = c_net
d['control_apply_to_uncond'] = False
n = [t[0], d]
c.append(n)
out.append(c)
return (out[0], out[1])
class CLIPTextEncode:
def encode(self, clip, text):
tokens = clip.tokenize(text)
cond, pooled = clip.encode_from_tokens(tokens, return_pooled=True)
return ([[cond, {"pooled_output": pooled}]], )
class KSampler:
def common_ksampler(self, model, seed, steps, cfg, sampler_name, scheduler, positive, negative, latent, denoise, disable_noise=False, start_step=None, last_step=None, force_full_denoise=False):
latent_image = latent["samples"]
latent_image = comfy.sample.fix_empty_latent_channels(model, latent_image)
if disable_noise:
noise = torch.zeros(latent_image.size(), dtype=latent_image.dtype, layout=latent_image.layout, device="cpu")
else:
batch_inds = latent["batch_index"] if "batch_index" in latent else None
noise = comfy.sample.prepare_noise(latent_image, seed, batch_inds)
noise_mask = None
if "noise_mask" in latent:
noise_mask = latent["noise_mask"]
callback = latent_preview.prepare_callback(model, steps)
disable_pbar = not comfy.utils.PROGRESS_BAR_ENABLED
samples = comfy.sample.sample(model, noise, steps, cfg, sampler_name, scheduler, positive, negative, latent_image,
denoise=denoise, disable_noise=disable_noise, start_step=start_step, last_step=last_step,
force_full_denoise=force_full_denoise, noise_mask=noise_mask, callback=callback, disable_pbar=disable_pbar, seed=seed)
out = latent.copy()
out["samples"] = samples
return (out, )
def sample(self, model, seed, steps, cfg, sampler_name, scheduler, positive, negative, latent_image, denoise=1.0):
return self.common_ksampler(model, seed, steps, cfg, sampler_name, scheduler, positive, negative, latent_image, denoise=denoise)
class VAEDecode:
def decode(self, vae, samples):
return (vae.decode(samples["samples"]), )
class ColorDetector:
def __call__(self, input_image=None, detect_resolution=2048, output_type=None, **kwargs):
input_image, output_type = common_input_validate(input_image, output_type, **kwargs)
input_image = HWC3(input_image)
detected_map = HWC3(apply_color(input_image, detect_resolution))
if output_type == "pil":
detected_map = Image.fromarray(detected_map)
return detected_map
class Color_Preprocessor:
def execute(self, image, resolution=512, **kwargs):
return (common_annotator_call(ColorDetector(), image, resolution=resolution), )
norm_layer = nn.InstanceNorm2d
class ResidualBlock(nn.Module):
def __init__(self, in_features):
super(ResidualBlock, self).__init__()
conv_block = [ nn.ReflectionPad2d(1),
nn.Conv2d(in_features, in_features, 3),
norm_layer(in_features),
nn.ReLU(inplace=True),
nn.ReflectionPad2d(1),
nn.Conv2d(in_features, in_features, 3),
norm_layer(in_features)
]
self.conv_block = nn.Sequential(*conv_block)
def forward(self, x):
return x + self.conv_block(x)
class Generator(nn.Module):
def __init__(self, input_nc, output_nc, n_residual_blocks=9, sigmoid=True):
super(Generator, self).__init__()
# Initial convolution block
model0 = [ nn.ReflectionPad2d(3),
nn.Conv2d(input_nc, 64, 7),
norm_layer(64),
nn.ReLU(inplace=True) ]
self.model0 = nn.Sequential(*model0)
# Downsampling
model1 = []
in_features = 64
out_features = in_features*2
for _ in range(2):
model1 += [ nn.Conv2d(in_features, out_features, 3, stride=2, padding=1),
norm_layer(out_features),
nn.ReLU(inplace=True) ]
in_features = out_features
out_features = in_features*2
self.model1 = nn.Sequential(*model1)
model2 = []
# Residual blocks
for _ in range(n_residual_blocks):
model2 += [ResidualBlock(in_features)]
self.model2 = nn.Sequential(*model2)
# Upsampling
model3 = []
out_features = in_features//2
for _ in range(2):
model3 += [ nn.ConvTranspose2d(in_features, out_features, 3, stride=2, padding=1, output_padding=1),
norm_layer(out_features),
nn.ReLU(inplace=True) ]
in_features = out_features
out_features = in_features//2
self.model3 = nn.Sequential(*model3)
# Output layer
model4 = [ nn.ReflectionPad2d(3),
nn.Conv2d(64, output_nc, 7)]
if sigmoid:
model4 += [nn.Sigmoid()]
self.model4 = nn.Sequential(*model4)
def forward(self, x, cond=None):
out = self.model0(x)
out = self.model1(out)
out = self.model2(out)
out = self.model3(out)
out = self.model4(out)
return out
class LineartDetector:
def __init__(self, model, coarse_model):
self.model = model
self.model_coarse = coarse_model
self.device = "cpu"
@classmethod
def from_pretrained(cls):
current_dir = os.path.dirname(os.path.abspath(__file__))
model_path = os.path.join(current_dir, "../models/preprocessor/sk_model.pth")
coarse_model_path = os.path.join(current_dir, "../models/preprocessor/sk_model2.pth")
# print("model_path:", model_path)
model = Generator(3, 1, 3)
model.load_state_dict(torch.load(model_path, map_location=torch.device('cpu')))
model.eval()
coarse_model = Generator(3, 1, 3)
coarse_model.load_state_dict(torch.load(coarse_model_path, map_location=torch.device('cpu')))
coarse_model.eval()
return cls(model, coarse_model)
def to(self, device):
self.model.to(device)
self.model_coarse.to(device)
self.device = device
return self
def __call__(self, input_image, coarse=False, detect_resolution=512, output_type="pil", upscale_method="INTER_CUBIC", **kwargs):
input_image, output_type = common_input_validate(input_image, output_type, **kwargs)
detected_map, remove_pad = resize_image_with_pad(input_image, detect_resolution, upscale_method)
model = self.model_coarse if coarse else self.model
assert detected_map.ndim == 3
with torch.no_grad():
image = torch.from_numpy(detected_map).float().to(self.device)
image = image / 255.0
image = rearrange(image, 'h w c -> 1 c h w')
line = model(image)[0][0]
line = line.cpu().numpy()
line = (line * 255.0).clip(0, 255).astype(np.uint8)
detected_map = HWC3(line)
detected_map = remove_pad(255 - detected_map)
if output_type == "pil":
detected_map = Image.fromarray(detected_map)
return detected_map
class LineArt_Preprocessor:
def execute(self, image, resolution=512, **kwargs):
model = LineartDetector.from_pretrained().to(comfy.model_management.get_torch_device())
print("model.device:", model.device)
out = common_annotator_call(model, image, resolution=resolution, apply_filter=False, coarse = kwargs["coarse"] == "enable")
del model
return (out, )
def nms(x, t, s):
x = cv2.GaussianBlur(x.astype(np.float32), (0, 0), s)
f1 = np.array([[0, 0, 0], [1, 1, 1], [0, 0, 0]], dtype=np.uint8)
f2 = np.array([[0, 1, 0], [0, 1, 0], [0, 1, 0]], dtype=np.uint8)
f3 = np.array([[1, 0, 0], [0, 1, 0], [0, 0, 1]], dtype=np.uint8)
f4 = np.array([[0, 0, 1], [0, 1, 0], [1, 0, 0]], dtype=np.uint8)
y = np.zeros_like(x)
for f in [f1, f2, f3, f4]:
np.putmask(y, cv2.dilate(x, kernel=f) == x, x)
z = np.zeros_like(y, dtype=np.uint8)
z[y > t] = 255
return z
class PidiNetDetector:
def __init__(self, netNetwork):
self.netNetwork = netNetwork
self.device = "cpu"
@classmethod
def from_pretrained(cls, filename="table5_pidinet.pth"):
current_dir = os.path.dirname(os.path.abspath(__file__))
model_path = os.path.join(current_dir, f"../models/preprocessor/{filename}")
netNetwork = pidinet()
netNetwork.load_state_dict({k.replace('module.', ''): v for k, v in torch.load(model_path)['state_dict'].items()})
netNetwork.eval()
return cls(netNetwork)
def to(self, device):
self.netNetwork.to(device)
self.device = device
return self
def __call__(self, input_image, detect_resolution=512, safe=False, output_type="pil", scribble=False, apply_filter=True, upscale_method="INTER_CUBIC", **kwargs):
input_image, output_type = common_input_validate(input_image, output_type, **kwargs)
detected_map, remove_pad = resize_image_with_pad(input_image, detect_resolution, upscale_method)
detected_map = detected_map[:, :, ::-1].copy()
with torch.no_grad():
image_pidi = torch.from_numpy(detected_map).float().to(self.device)
image_pidi = image_pidi / 255.0
image_pidi = rearrange(image_pidi, 'h w c -> 1 c h w')
edge = self.netNetwork(image_pidi)[-1]
edge = edge.cpu().numpy()
if apply_filter:
edge = edge > 0.5
edge = (edge * 255.0).clip(0, 255).astype(np.uint8)
detected_map = edge[0, 0]
if scribble:
detected_map = nms(detected_map, 127, 3.0)
detected_map = cv2.GaussianBlur(detected_map, (0, 0), 3.0)
detected_map[detected_map > 4] = 255
detected_map[detected_map < 255] = 0
detected_map = HWC3(remove_pad(detected_map))
if output_type == "pil":
detected_map = Image.fromarray(detected_map)
return detected_map
class GrowMask:
def expand_mask(self, mask, expand, tapered_corners):
c = 0 if tapered_corners else 1
kernel = np.array([[c, 1, c],
[1, 1, 1],
[c, 1, c]])
mask = mask.reshape((-1, mask.shape[-2], mask.shape[-1]))
out = []
for m in mask:
output = m.numpy()
for _ in range(abs(expand)):
if expand < 0:
output = scipy.ndimage.grey_erosion(output, footprint=kernel)
else:
output = scipy.ndimage.grey_dilation(output, footprint=kernel)
output = torch.from_numpy(output)
out.append(output)
return (torch.stack(out, dim=0),)
class PIDINET_Preprocessor:
def execute(self, image, resolution=512, **kwargs):
model = PidiNetDetector.from_pretrained().to(comfy.model_management.get_torch_device())
out = common_annotator_call(model, image, resolution=resolution, safe=True)
del model
return (out, ) |