Spaces:
Running
on
Zero
Running
on
Zero
File size: 7,085 Bytes
d4733f5 ca78dbf d4733f5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 |
import torch.nn.functional as F
import torch
import numpy as np
from PIL import Image
import os
import sys
sys.path.append(os.path.dirname(os.path.abspath(__file__)))
from .brushnet_nodes import BrushNetLoader, BrushNet, BlendInpaint, get_files_with_extension
from .comfyui_utils import CheckpointLoaderSimple, ControlNetLoader, ControlNetApplyAdvanced, CLIPTextEncode, KSampler, VAEDecode, GrowMask, PIDINET_Preprocessor, LineArt_Preprocessor, Color_Preprocessor
class ScribbleColorEditModel():
def __init__(self):
self.checkpoint_loader = CheckpointLoaderSimple()
self.clip_text_encoder = CLIPTextEncode()
self.mask_processor = GrowMask()
self.controlnet_loader = ControlNetLoader()
self.scribble_processor = PIDINET_Preprocessor()
self.lineart_processor = LineArt_Preprocessor()
self.color_processor = Color_Preprocessor()
self.brushnet_loader = BrushNetLoader()
self.brushnet_node = BrushNet()
self.controlnet_apply = ControlNetApplyAdvanced()
self.ksampler = KSampler()
self.vae_decoder = VAEDecode()
self.blender = BlendInpaint()
self.ckpt_name = "SD1.5/realisticVisionV60B1_v51VAE.safetensors"
with torch.no_grad():
self.model, self.clip, self.vae = self.checkpoint_loader.load_checkpoint(self.ckpt_name)
self.load_models('SD1.5', 'float16')
def load_models(self, base_model_version="SD1.5", dtype='float16'):
if base_model_version == "SD1.5":
edge_controlnet_name = "control_v11p_sd15_scribble.safetensors"
color_controlnet_name = "color_finetune.safetensors"
brushnet_name = "brushnet/random_mask_brushnet_ckpt/diffusion_pytorch_model.safetensors"
# elif base_model_version == "SDXL":
# edge_controlnet_name = "controlnet-scribble-sdxl-1.0.safetensors"
# color_controlnet_name = "colorGridControlnet_v10.safetensors"
# brushnet_name = "brushnet_xl/random_mask_brushnet_ckpt_sdxl_v0/diffusion_pytorch_model.safetensors"
else:
raise ValueError("Invalid base_model_version, not supported yet!!!: {}".format(base_model_version))
self.edge_controlnet = self.controlnet_loader.load_controlnet(edge_controlnet_name)[0]
self.color_controlnet = self.controlnet_loader.load_controlnet(color_controlnet_name)[0]
self.brushnet_loader.inpaint_files = get_files_with_extension('inpaint')
print("self.brushnet_loader.inpaint_files: ", get_files_with_extension('inpaint'))
self.brushnet = self.brushnet_loader.brushnet_loading(brushnet_name, dtype)[0]
def process(self, ckpt_name, image, colored_image, positive_prompt, negative_prompt, mask, add_mask, remove_mask, grow_size, stroke_as_edge, fine_edge, edge_strength, color_strength, inpaint_strength, seed, steps, cfg, sampler_name, scheduler, base_model_version='SD1.5', dtype='float16', palette_resolution=2048):
if ckpt_name != self.ckpt_name:
self.ckpt_name = ckpt_name
with torch.no_grad():
self.model, self.clip, self.vae = self.checkpoint_loader.load_checkpoint(ckpt_name)
if not hasattr(self, 'edge_controlnet') or not hasattr(self, 'color_controlnet') or not hasattr(self, 'brushnet'):
self.load_models(base_model_version, dtype)
positive = self.clip_text_encoder.encode(self.clip, positive_prompt)[0]
negative = self.clip_text_encoder.encode(self.clip, negative_prompt)[0]
# Grow Mask for Color Editing
mask = self.mask_processor.expand_mask(mask, expand=grow_size, tapered_corners=True)[0]
# Realistic Lineart
image_copy = image.clone()
if stroke_as_edge == "disable":
bool_add_mask = add_mask > 0.5
mean_brightness = image_copy[bool_add_mask].mean()
if mean_brightness > 0.8:
image_copy[bool_add_mask] = 0.0
else:
image_copy[bool_add_mask] = 1.0
if not torch.equal(image, colored_image):
print("Apply color controlnet")
color_output = self.color_processor.execute(colored_image, resolution=palette_resolution)[0]
lineart_output = self.lineart_processor.execute(image, resolution=512, coarse=False)[0]
positive, negative = self.controlnet_apply.apply_controlnet(positive, negative, self.color_controlnet, color_output, color_strength, 0.0, 1.0)
positive, negative = self.controlnet_apply.apply_controlnet(positive, negative, self.edge_controlnet, lineart_output, 0.8, 0.0, 1.0)
else:
print("Apply edge controlnet")
# Resize masks to match the dimensions of lineart_output
color_output = self.color_processor.execute(image, resolution=palette_resolution)[0]
if fine_edge == "enable":
lineart_output = self.lineart_processor.execute(image, resolution=512, coarse=False)[0]
else:
lineart_output = self.scribble_processor.execute(image, resolution=512)[0]
add_mask_resized = F.interpolate(add_mask.unsqueeze(0).unsqueeze(0).float(), size=(1, lineart_output.shape[1], lineart_output.shape[2]), mode='nearest').squeeze(0).squeeze(0)
remove_mask_resized = F.interpolate(remove_mask.unsqueeze(0).unsqueeze(0).float(), size=(1, lineart_output.shape[1], lineart_output.shape[2]), mode='nearest').squeeze(0).squeeze(0)
bool_add_mask_resized = (add_mask_resized > 0.5)
bool_remove_mask_resized = (remove_mask_resized > 0.5)
if stroke_as_edge == "enable":
lineart_output[bool_remove_mask_resized] = 0.0
lineart_output[bool_add_mask_resized] = 1.0
else:
lineart_output[bool_remove_mask_resized & ~bool_add_mask_resized] = 0.0
positive, negative = self.controlnet_apply.apply_controlnet(positive, negative, self.edge_controlnet, lineart_output, edge_strength, 0.0, 1.0)
# BrushNet
model, positive, negative, latent = self.brushnet_node.model_update(
model=self.model,
vae=self.vae,
image=image,
mask=mask,
brushnet=self.brushnet,
positive=positive,
negative=negative,
scale=inpaint_strength,
start_at=0,
end_at=10000
)
# KSampler Node
latent_samples = self.ksampler.sample(
model=model,
seed=seed,
steps=steps,
cfg=cfg,
sampler_name=sampler_name,
scheduler=scheduler,
positive=positive,
negative=negative,
latent_image=latent,
)[0]
final_image = self.vae_decoder.decode(self.vae, latent_samples)[0]
final_image = self.blender.blend_inpaint(final_image, image, mask, kernel=10, sigma=10.0)[0]
# Return the final image
return (latent_samples, final_image, lineart_output, color_output)
|