EndlessSora commited on
Commit
69c288d
·
1 Parent(s): 04452e3

update CPU offload

Browse files
app.py CHANGED
@@ -105,7 +105,7 @@ def prepare_pipeline(model_version, enable_realism, enable_anti_blur):
105
  return pipeline
106
 
107
 
108
- @spaces.GPU
109
  def generate_image(
110
  input_image,
111
  control_image,
@@ -238,7 +238,7 @@ with gr.Blocks() as demo:
238
  inputs=[ui_id_image, ui_control_image, ui_prompt_text, ui_seed, ui_enable_realism, ui_enable_anti_blur, ui_model_version],
239
  outputs=[image_output],
240
  fn=generate_examples,
241
- cache_examples=True,
242
  )
243
 
244
  ui_btn_generate.click(
 
105
  return pipeline
106
 
107
 
108
+ @spaces.GPU(duration=120)
109
  def generate_image(
110
  input_image,
111
  control_image,
 
238
  inputs=[ui_id_image, ui_control_image, ui_prompt_text, ui_seed, ui_enable_realism, ui_enable_anti_blur, ui_model_version],
239
  outputs=[image_output],
240
  fn=generate_examples,
241
+ cache_examples=True
242
  )
243
 
244
  ui_btn_generate.click(
pipelines/pipeline_flux_infusenet.py CHANGED
@@ -261,6 +261,9 @@ class FluxInfuseNetPipeline(FluxControlNetPipeline):
261
  images.
262
  """
263
 
 
 
 
264
  height = height or self.default_sample_size * self.vae_scale_factor
265
  width = width or self.default_sample_size * self.vae_scale_factor
266
 
@@ -487,6 +490,11 @@ class FluxInfuseNetPipeline(FluxControlNetPipeline):
487
  ]
488
  controlnet_keep.append(keeps[0] if isinstance(self.controlnet, FluxControlNetModel) else keeps)
489
 
 
 
 
 
 
490
  # 7. Denoising loop
491
  with self.progress_bar(total=num_inference_steps) as progress_bar:
492
  for i, t in enumerate(timesteps):
@@ -591,6 +599,11 @@ class FluxInfuseNetPipeline(FluxControlNetPipeline):
591
 
592
  if XLA_AVAILABLE:
593
  xm.mark_step()
 
 
 
 
 
594
 
595
  if output_type == "latent":
596
  image = latents
 
261
  images.
262
  """
263
 
264
+ # CPU offload controlnet
265
+ self.controlnet.cpu()
266
+
267
  height = height or self.default_sample_size * self.vae_scale_factor
268
  width = width or self.default_sample_size * self.vae_scale_factor
269
 
 
490
  ]
491
  controlnet_keep.append(keeps[0] if isinstance(self.controlnet, FluxControlNetModel) else keeps)
492
 
493
+ # CPU offload T5, move back controlnet to GPU
494
+ self.text_encoder_2.cpu()
495
+ torch.cuda.empty_cache()
496
+ self.controlnet.to(device)
497
+
498
  # 7. Denoising loop
499
  with self.progress_bar(total=num_inference_steps) as progress_bar:
500
  for i, t in enumerate(timesteps):
 
599
 
600
  if XLA_AVAILABLE:
601
  xm.mark_step()
602
+
603
+ # CPU offload controlnet, move back T5 to GPU
604
+ self.controlnet.cpu()
605
+ torch.cuda.empty_cache()
606
+ self.text_encoder_2.to(device)
607
 
608
  if output_type == "latent":
609
  image = latents
pipelines/pipeline_infu_flux.py CHANGED
@@ -167,8 +167,11 @@ class InfUFluxPipeline:
167
  'After that, run the code again. If you have downloaded it, please use `base_model_path` to specify the correct path.')
168
  print('\nIf you are using other models, please download them to a local directory and use `base_model_path` to specify the correct path.')
169
  exit()
170
- # pipe.to('cuda', torch.bfloat16)
171
- pipe.enable_model_cpu_offload()
 
 
 
172
  self.pipe = pipe
173
 
174
  # Load image proj model
 
167
  'After that, run the code again. If you have downloaded it, please use `base_model_path` to specify the correct path.')
168
  print('\nIf you are using other models, please download them to a local directory and use `base_model_path` to specify the correct path.')
169
  exit()
170
+ pipe.to('cuda', torch.bfloat16)
171
+ # CPU offload controlnet in advance
172
+ pipe.controlnet.cpu()
173
+ torch.cuda.empty_cache()
174
+ # pipe.enable_model_cpu_offload()
175
  self.pipe = pipe
176
 
177
  # Load image proj model