File size: 7,701 Bytes
2492d81
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
from torch import nn
import torch
import torch.nn.functional as F
from modules.util import AntiAliasInterpolation2d, TPS
from torchvision import models
import numpy as np


class Vgg19(torch.nn.Module):
    """
    Vgg19 network for perceptual loss. See Sec 3.3.
    """
    def __init__(self, requires_grad=False):
        super(Vgg19, self).__init__()
        vgg_pretrained_features = models.vgg19(pretrained=True).features
        self.slice1 = torch.nn.Sequential()
        self.slice2 = torch.nn.Sequential()
        self.slice3 = torch.nn.Sequential()
        self.slice4 = torch.nn.Sequential()
        self.slice5 = torch.nn.Sequential()
        for x in range(2):
            self.slice1.add_module(str(x), vgg_pretrained_features[x])
        for x in range(2, 7):
            self.slice2.add_module(str(x), vgg_pretrained_features[x])
        for x in range(7, 12):
            self.slice3.add_module(str(x), vgg_pretrained_features[x])
        for x in range(12, 21):
            self.slice4.add_module(str(x), vgg_pretrained_features[x])
        for x in range(21, 30):
            self.slice5.add_module(str(x), vgg_pretrained_features[x])

        self.mean = torch.nn.Parameter(data=torch.Tensor(np.array([0.485, 0.456, 0.406]).reshape((1, 3, 1, 1))),
                                       requires_grad=False)
        self.std = torch.nn.Parameter(data=torch.Tensor(np.array([0.229, 0.224, 0.225]).reshape((1, 3, 1, 1))),
                                      requires_grad=False)

        if not requires_grad:
            for param in self.parameters():
                param.requires_grad = False

    def forward(self, X):
        X = (X - self.mean) / self.std
        h_relu1 = self.slice1(X)
        h_relu2 = self.slice2(h_relu1)
        h_relu3 = self.slice3(h_relu2)
        h_relu4 = self.slice4(h_relu3)
        h_relu5 = self.slice5(h_relu4)
        out = [h_relu1, h_relu2, h_relu3, h_relu4, h_relu5]
        return out


class ImagePyramide(torch.nn.Module):
    """
    Create image pyramide for computing pyramide perceptual loss. See Sec 3.3
    """
    def __init__(self, scales, num_channels):
        super(ImagePyramide, self).__init__()
        downs = {}
        for scale in scales:
            downs[str(scale).replace('.', '-')] = AntiAliasInterpolation2d(num_channels, scale)
        self.downs = nn.ModuleDict(downs)

    def forward(self, x):
        out_dict = {}
        for scale, down_module in self.downs.items():
            out_dict['prediction_' + str(scale).replace('-', '.')] = down_module(x)
        return out_dict


def detach_kp(kp):
    return {key: value.detach() for key, value in kp.items()}


class GeneratorFullModel(torch.nn.Module):
    """
    Merge all generator related updates into single model for better multi-gpu usage
    """

    def __init__(self, kp_extractor, bg_predictor, dense_motion_network, inpainting_network, train_params, *kwargs):
        super(GeneratorFullModel, self).__init__()
        self.kp_extractor = kp_extractor
        self.inpainting_network = inpainting_network
        self.dense_motion_network = dense_motion_network

        self.bg_predictor = None
        if bg_predictor:
            self.bg_predictor = bg_predictor
            self.bg_start = train_params['bg_start']

        self.train_params = train_params
        self.scales = train_params['scales']

        self.pyramid = ImagePyramide(self.scales, inpainting_network.num_channels)
        if torch.cuda.is_available():
            self.pyramid = self.pyramid.cuda()

        self.loss_weights = train_params['loss_weights']
        self.dropout_epoch = train_params['dropout_epoch']
        self.dropout_maxp = train_params['dropout_maxp']
        self.dropout_inc_epoch = train_params['dropout_inc_epoch']
        self.dropout_startp =train_params['dropout_startp']
        
        if sum(self.loss_weights['perceptual']) != 0:
            self.vgg = Vgg19()
            if torch.cuda.is_available():
                self.vgg = self.vgg.cuda()


    def forward(self, x, epoch):
        kp_source = self.kp_extractor(x['source'])
        kp_driving = self.kp_extractor(x['driving'])
        bg_param = None
        if self.bg_predictor:
            if(epoch>=self.bg_start):
                bg_param = self.bg_predictor(x['source'], x['driving'])
          
        if(epoch>=self.dropout_epoch):
            dropout_flag = False
            dropout_p = 0
        else:
            # dropout_p will linearly increase from dropout_startp to dropout_maxp 
            dropout_flag = True
            dropout_p = min(epoch/self.dropout_inc_epoch * self.dropout_maxp + self.dropout_startp, self.dropout_maxp)
        
        dense_motion = self.dense_motion_network(source_image=x['source'], kp_driving=kp_driving,
                                                    kp_source=kp_source, bg_param = bg_param, 
                                                    dropout_flag = dropout_flag, dropout_p = dropout_p)
        generated = self.inpainting_network(x['source'], dense_motion)
        generated.update({'kp_source': kp_source, 'kp_driving': kp_driving})

        loss_values = {}

        pyramide_real = self.pyramid(x['driving'])
        pyramide_generated = self.pyramid(generated['prediction'])

        # reconstruction loss
        if sum(self.loss_weights['perceptual']) != 0:
            value_total = 0
            for scale in self.scales:
                x_vgg = self.vgg(pyramide_generated['prediction_' + str(scale)])
                y_vgg = self.vgg(pyramide_real['prediction_' + str(scale)])

                for i, weight in enumerate(self.loss_weights['perceptual']):
                    value = torch.abs(x_vgg[i] - y_vgg[i].detach()).mean()
                    value_total += self.loss_weights['perceptual'][i] * value
            loss_values['perceptual'] = value_total

        # equivariance loss
        if self.loss_weights['equivariance_value'] != 0:
            transform_random = TPS(mode = 'random', bs = x['driving'].shape[0], **self.train_params['transform_params'])
            transform_grid = transform_random.transform_frame(x['driving'])
            transformed_frame = F.grid_sample(x['driving'], transform_grid, padding_mode="reflection",align_corners=True)
            transformed_kp = self.kp_extractor(transformed_frame)

            generated['transformed_frame'] = transformed_frame
            generated['transformed_kp'] = transformed_kp
        
            warped = transform_random.warp_coordinates(transformed_kp['fg_kp'])
            kp_d = kp_driving['fg_kp']
            value = torch.abs(kp_d - warped).mean()
            loss_values['equivariance_value'] = self.loss_weights['equivariance_value'] * value

        # warp loss
        if self.loss_weights['warp_loss'] != 0:
            occlusion_map = generated['occlusion_map']
            encode_map = self.inpainting_network.get_encode(x['driving'], occlusion_map)
            decode_map = generated['warped_encoder_maps']
            value = 0
            for i in range(len(encode_map)):
                value += torch.abs(encode_map[i]-decode_map[-i-1]).mean()

            loss_values['warp_loss'] = self.loss_weights['warp_loss'] * value
        
        # bg loss
        if self.bg_predictor and epoch >= self.bg_start and self.loss_weights['bg'] != 0:
            bg_param_reverse = self.bg_predictor(x['driving'], x['source'])
            value = torch.matmul(bg_param, bg_param_reverse)
            eye = torch.eye(3).view(1, 1, 3, 3).type(value.type())
            value = torch.abs(eye - value).mean()
            loss_values['bg'] = self.loss_weights['bg'] * value

        return loss_values, generated