import gradio as gr import cv2 import torch from sahi import AutoDetectionModel from sahi.predict import get_sliced_prediction from motpy import Detection as MotpyDetection, MultiObjectTracker import tempfile # COCO class names (YOLOv8 default) COCO_CLASSES = [ 'person', 'bicycle', 'car', 'motorcycle', 'airplane', 'bus', 'train', 'truck', 'boat', 'traffic light', 'fire hydrant', 'stop sign', 'parking meter', 'bench', 'bird', 'cat', 'dog', 'horse', 'sheep', 'cow', 'elephant', 'bear', 'zebra', 'giraffe', 'backpack', 'umbrella', 'handbag', 'tie', 'suitcase', 'frisbee', 'skis', 'snowboard', 'sports ball', 'kite', 'baseball bat', 'baseball glove', 'skateboard', 'surfboard', 'tennis racket', 'bottle', 'wine glass', 'cup', 'fork', 'knife', 'spoon', 'bowl', 'banana', 'apple', 'sandwich', 'orange', 'broccoli', 'carrot', 'hot dog', 'pizza', 'donut', 'cake', 'chair', 'couch', 'potted plant', 'bed', 'dining table', 'toilet', 'tv', 'laptop', 'mouse', 'remote', 'keyboard', 'cell phone', 'microwave', 'oven', 'toaster', 'sink', 'refrigerator', 'book', 'clock', 'vase', 'scissors', 'teddy bear', 'hair drier', 'toothbrush' ] model_path = "./yolo11n.pt" detection_model = AutoDetectionModel.from_pretrained( model_type='yolov8', model_path=model_path, confidence_threshold=0.3, device='cpu' # Force CPU usage ) def track_objects(video_path): # Setup video processing cap = cv2.VideoCapture(video_path) width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH)) height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT)) fps = cap.get(cv2.CAP_PROP_FPS) output_file = tempfile.NamedTemporaryFile(suffix='.mp4', delete=False) output_path = output_file.name fourcc = cv2.VideoWriter_fourcc(*'mp4v') out = cv2.VideoWriter(output_path, fourcc, fps, (width, height)) tracker = MultiObjectTracker( dt=0.1, model_spec={ 'order_pos': 1, 'dim_pos': 2, 'order_size': 0, 'dim_size': 2, 'q_var_pos': 5000., 'r_var_pos': 0.1 } ) frame_count = 0 while cap.isOpened(): ret, frame = cap.read() if not ret: break rgb_frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB) result = get_sliced_prediction( rgb_frame, detection_model, slice_height=512, slice_width=512, overlap_height_ratio=0.2, overlap_width_ratio=0.2 ) detections = [ MotpyDetection( box=[obj.bbox.minx, obj.bbox.miny, obj.bbox.maxx, obj.bbox.maxy], score=obj.score.value, class_id=obj.category.id ) for obj in result.object_prediction_list ] tracker.step(detections) tracks = tracker.active_tracks() for track in tracks: x1, y1, x2, y2 = map(int, track.box) track_id = track.id class_id = track.class_id if track.class_id is not None else -1 class_name = COCO_CLASSES[class_id] if 0 <= class_id < len(COCO_CLASSES) else str(class_id) cv2.rectangle(frame, (x1, y1), (x2, y2), (0, 255, 0), 2) cv2.putText(frame, f'{class_name} {track_id}', (x1, y1 - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255, 0), 2) out.write(frame) cap.release() out.release() return output_path def process_video(video): output_path = track_objects(video) return output_path interface = gr.Interface( fn=process_video, inputs=gr.Video(label="Input Video"), outputs=[ gr.Video(label="Processed Video"), gr.File(label="Download Processed Video") ], title="SAHI Video Object Tracker", description="Object detection and tracking using SAHI and YOLOv11." ) if __name__ == "__main__": interface.launch()