ayyuce commited on
Commit
f475e3a
·
verified ·
1 Parent(s): 8c00a90

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +14 -10
app.py CHANGED
@@ -104,16 +104,18 @@ def generate_report(frontal_path, lateral_path, indication, technique, compariso
104
  return_tensors="pt",
105
  get_grounding=grounding
106
  ).to("cpu")
107
-
108
- processed_inputs = {k: v for k, v in processed.items() if k != 'image_sizes'}
109
-
 
 
110
  outputs = MODEL_STATE["model"].generate(
111
- **processed_inputs,
112
  max_new_tokens=450 if grounding else 300,
113
  use_cache=True
114
  )
115
 
116
- prompt_length = processed_inputs["input_ids"].shape[-1]
117
  decoded = MODEL_STATE["processor"].decode(outputs[0][prompt_length:], skip_special_tokens=True)
118
  return MODEL_STATE["processor"].convert_output_to_plaintext_or_grounded_sequence(decoded.lstrip())
119
 
@@ -135,16 +137,18 @@ def ground_phrase(frontal_path, phrase):
135
  phrase=phrase,
136
  return_tensors="pt"
137
  ).to("cpu")
138
-
139
- processed_inputs = {k: v for k, v in processed.items() if k != 'image_sizes'}
 
 
140
 
141
  outputs = MODEL_STATE["model"].generate(
142
- **processed_inputs,
143
  max_new_tokens=150,
144
  use_cache=True
145
  )
146
 
147
- prompt_length = processed_inputs["input_ids"].shape[-1]
148
  decoded = MODEL_STATE["processor"].decode(outputs[0][prompt_length:], skip_special_tokens=True)
149
  return MODEL_STATE["processor"].convert_output_to_plaintext_or_grounded_sequence(decoded)
150
 
@@ -229,4 +233,4 @@ with gr.Blocks(title="MAIRA-2 Medical Assistant") as demo:
229
  outputs=pg_output
230
  )
231
 
232
- demo.launch()
 
104
  return_tensors="pt",
105
  get_grounding=grounding
106
  ).to("cpu")
107
+
108
+
109
+ if "image_sizes" in processed:
110
+ processed.pop("image_sizes")
111
+
112
  outputs = MODEL_STATE["model"].generate(
113
+ **processed,
114
  max_new_tokens=450 if grounding else 300,
115
  use_cache=True
116
  )
117
 
118
+ prompt_length = processed["input_ids"].shape[-1]
119
  decoded = MODEL_STATE["processor"].decode(outputs[0][prompt_length:], skip_special_tokens=True)
120
  return MODEL_STATE["processor"].convert_output_to_plaintext_or_grounded_sequence(decoded.lstrip())
121
 
 
137
  phrase=phrase,
138
  return_tensors="pt"
139
  ).to("cpu")
140
+
141
+
142
+ if "image_sizes" in processed:
143
+ processed.pop("image_sizes")
144
 
145
  outputs = MODEL_STATE["model"].generate(
146
+ **processed,
147
  max_new_tokens=150,
148
  use_cache=True
149
  )
150
 
151
+ prompt_length = processed["input_ids"].shape[-1]
152
  decoded = MODEL_STATE["processor"].decode(outputs[0][prompt_length:], skip_special_tokens=True)
153
  return MODEL_STATE["processor"].convert_output_to_plaintext_or_grounded_sequence(decoded)
154
 
 
233
  outputs=pg_output
234
  )
235
 
236
+ demo.launch()