Update app.py
Browse files
app.py
CHANGED
|
@@ -104,16 +104,18 @@ def generate_report(frontal_path, lateral_path, indication, technique, compariso
|
|
| 104 |
return_tensors="pt",
|
| 105 |
get_grounding=grounding
|
| 106 |
).to("cpu")
|
| 107 |
-
|
| 108 |
-
|
| 109 |
-
|
|
|
|
|
|
|
| 110 |
outputs = MODEL_STATE["model"].generate(
|
| 111 |
-
**
|
| 112 |
max_new_tokens=450 if grounding else 300,
|
| 113 |
use_cache=True
|
| 114 |
)
|
| 115 |
|
| 116 |
-
prompt_length =
|
| 117 |
decoded = MODEL_STATE["processor"].decode(outputs[0][prompt_length:], skip_special_tokens=True)
|
| 118 |
return MODEL_STATE["processor"].convert_output_to_plaintext_or_grounded_sequence(decoded.lstrip())
|
| 119 |
|
|
@@ -135,16 +137,18 @@ def ground_phrase(frontal_path, phrase):
|
|
| 135 |
phrase=phrase,
|
| 136 |
return_tensors="pt"
|
| 137 |
).to("cpu")
|
| 138 |
-
|
| 139 |
-
|
|
|
|
|
|
|
| 140 |
|
| 141 |
outputs = MODEL_STATE["model"].generate(
|
| 142 |
-
**
|
| 143 |
max_new_tokens=150,
|
| 144 |
use_cache=True
|
| 145 |
)
|
| 146 |
|
| 147 |
-
prompt_length =
|
| 148 |
decoded = MODEL_STATE["processor"].decode(outputs[0][prompt_length:], skip_special_tokens=True)
|
| 149 |
return MODEL_STATE["processor"].convert_output_to_plaintext_or_grounded_sequence(decoded)
|
| 150 |
|
|
@@ -229,4 +233,4 @@ with gr.Blocks(title="MAIRA-2 Medical Assistant") as demo:
|
|
| 229 |
outputs=pg_output
|
| 230 |
)
|
| 231 |
|
| 232 |
-
demo.launch()
|
|
|
|
| 104 |
return_tensors="pt",
|
| 105 |
get_grounding=grounding
|
| 106 |
).to("cpu")
|
| 107 |
+
|
| 108 |
+
|
| 109 |
+
if "image_sizes" in processed:
|
| 110 |
+
processed.pop("image_sizes")
|
| 111 |
+
|
| 112 |
outputs = MODEL_STATE["model"].generate(
|
| 113 |
+
**processed,
|
| 114 |
max_new_tokens=450 if grounding else 300,
|
| 115 |
use_cache=True
|
| 116 |
)
|
| 117 |
|
| 118 |
+
prompt_length = processed["input_ids"].shape[-1]
|
| 119 |
decoded = MODEL_STATE["processor"].decode(outputs[0][prompt_length:], skip_special_tokens=True)
|
| 120 |
return MODEL_STATE["processor"].convert_output_to_plaintext_or_grounded_sequence(decoded.lstrip())
|
| 121 |
|
|
|
|
| 137 |
phrase=phrase,
|
| 138 |
return_tensors="pt"
|
| 139 |
).to("cpu")
|
| 140 |
+
|
| 141 |
+
|
| 142 |
+
if "image_sizes" in processed:
|
| 143 |
+
processed.pop("image_sizes")
|
| 144 |
|
| 145 |
outputs = MODEL_STATE["model"].generate(
|
| 146 |
+
**processed,
|
| 147 |
max_new_tokens=150,
|
| 148 |
use_cache=True
|
| 149 |
)
|
| 150 |
|
| 151 |
+
prompt_length = processed["input_ids"].shape[-1]
|
| 152 |
decoded = MODEL_STATE["processor"].decode(outputs[0][prompt_length:], skip_special_tokens=True)
|
| 153 |
return MODEL_STATE["processor"].convert_output_to_plaintext_or_grounded_sequence(decoded)
|
| 154 |
|
|
|
|
| 233 |
outputs=pg_output
|
| 234 |
)
|
| 235 |
|
| 236 |
+
demo.launch()
|