MAIRA-2 / app.py
ayyuce's picture
Update app.py
e2d3fe3 verified
raw
history blame
11.3 kB
import gradio as gr
import torch
import requests
import tempfile
from pathlib import Path
from PIL import Image
from transformers import AutoModelForCausalLM, AutoProcessor
_model_cache = {}
def load_model_and_processor(hf_token: str):
"""
Loads the MAIRA-2 model and processor from Hugging Face using the provided token.
The loaded objects are cached keyed by the token.
"""
if hf_token in _model_cache:
return _model_cache[hf_token]
device = torch.device("cpu")
model = AutoModelForCausalLM.from_pretrained(
"microsoft/maira-2",
trust_remote_code=True,
use_auth_token=hf_token
)
processor = AutoProcessor.from_pretrained(
"microsoft/maira-2",
trust_remote_code=True,
use_auth_token=hf_token
)
model.eval()
model.to(device)
_model_cache[hf_token] = (model, processor)
return model, processor
def get_sample_data() -> dict:
"""
Downloads sample chest X-ray images and associated data.
"""
frontal_image_url = "https://openi.nlm.nih.gov/imgs/512/145/145/CXR145_IM-0290-1001.png"
lateral_image_url = "https://openi.nlm.nih.gov/imgs/512/145/145/CXR145_IM-0290-2001.png"
def download_and_open(url: str) -> Image.Image:
response = requests.get(url, headers={"User-Agent": "MAIRA-2"}, stream=True)
return Image.open(response.raw).convert("RGB")
frontal = download_and_open(frontal_image_url)
lateral = download_and_open(lateral_image_url)
return {
"frontal": frontal,
"lateral": lateral,
"indication": "Dyspnea.",
"technique": "PA and lateral views of the chest.",
"comparison": "None.",
"phrase": "Pleural effusion."
}
def generate_report(hf_token, frontal, lateral, indication, technique, comparison, use_grounding):
"""
Generates a radiology report using the MAIRA-2 model.
If any image/text input is missing, sample data is used.
"""
try:
model, processor = load_model_and_processor(hf_token)
except Exception as e:
return f"Error loading model: {str(e)}"
device = torch.device("cpu")
sample = get_sample_data()
if frontal is None:
frontal = sample["frontal"]
if lateral is None:
lateral = sample["lateral"]
if not indication:
indication = sample["indication"]
if not technique:
technique = sample["technique"]
if not comparison:
comparison = sample["comparison"]
processed_inputs = processor.format_and_preprocess_reporting_input(
current_frontal=frontal,
current_lateral=lateral,
prior_frontal=None, # No prior study is used in this demo.
indication=indication,
technique=technique,
comparison=comparison,
prior_report=None,
return_tensors="pt",
get_grounding=use_grounding,
)
# Move all tensors to the CPU
processed_inputs = {k: v.to(device) for k, v in processed_inputs.items()}
# Remove keys containing "image_sizes" to prevent unexpected keyword errors.
processed_inputs = dict(processed_inputs)
keys_to_remove = [k for k in processed_inputs if "image_sizes" in k]
for key in keys_to_remove:
processed_inputs.pop(key, None)
max_tokens = 450 if use_grounding else 300
with torch.no_grad():
output_decoding = model.generate(
**processed_inputs,
max_new_tokens=max_tokens,
use_cache=True,
)
prompt_length = processed_inputs["input_ids"].shape[-1]
decoded_text = processor.decode(output_decoding[0][prompt_length:], skip_special_tokens=True)
decoded_text = decoded_text.lstrip() # Remove any leading whitespace
prediction = processor.convert_output_to_plaintext_or_grounded_sequence(decoded_text)
return prediction
def run_phrase_grounding(hf_token, frontal, phrase):
"""
Runs phrase grounding using the MAIRA-2 model.
If image or phrase is missing, sample data is used.
"""
try:
model, processor = load_model_and_processor(hf_token)
except Exception as e:
return f"Error loading model: {str(e)}"
device = torch.device("cpu")
sample = get_sample_data()
if frontal is None:
frontal = sample["frontal"]
if not phrase:
phrase = sample["phrase"]
processed_inputs = processor.format_and_preprocess_phrase_grounding_input(
frontal_image=frontal,
phrase=phrase,
return_tensors="pt",
)
processed_inputs = {k: v.to(device) for k, v in processed_inputs.items()}
# Remove keys containing "image_sizes" to prevent unexpected keyword errors.
processed_inputs = dict(processed_inputs)
keys_to_remove = [k for k in processed_inputs if "image_sizes" in k]
for key in keys_to_remove:
processed_inputs.pop(key, None)
with torch.no_grad():
output_decoding = model.generate(
**processed_inputs,
max_new_tokens=150,
use_cache=True,
)
prompt_length = processed_inputs["input_ids"].shape[-1]
decoded_text = processor.decode(output_decoding[0][prompt_length:], skip_special_tokens=True)
prediction = processor.convert_output_to_plaintext_or_grounded_sequence(decoded_text)
return prediction
def login_ui(hf_token):
"""Authenticate the user by loading the model."""
try:
load_model_and_processor(hf_token)
return "πŸ”“ Login successful! You can now use the model."
except Exception as e:
return f"❌ Login failed: {str(e)}"
def generate_report_ui(hf_token, frontal_path, lateral_path, indication, technique, comparison,
prior_frontal_path, prior_lateral_path, prior_report, grounding):
"""
Wrapper for generate_report that accepts file paths (from the UI) for images.
Prior study fields are ignored.
"""
try:
frontal = Image.open(frontal_path) if frontal_path else None
lateral = Image.open(lateral_path) if lateral_path else None
except Exception as e:
return f"❌ Error loading images: {str(e)}"
return generate_report(hf_token, frontal, lateral, indication, technique, comparison, grounding)
def run_phrase_grounding_ui(hf_token, frontal_path, phrase):
"""
Wrapper for run_phrase_grounding that accepts a file path for the frontal image.
"""
try:
frontal = Image.open(frontal_path) if frontal_path else None
except Exception as e:
return f"❌ Error loading image: {str(e)}"
return run_phrase_grounding(hf_token, frontal, phrase)
def save_temp_image(img: Image.Image) -> str:
"""Save a PIL image to a temporary file and return the file path."""
temp_file = tempfile.NamedTemporaryFile(suffix=".png", delete=False)
img.save(temp_file.name)
return temp_file.name
def load_sample_findings():
"""
Loads sample data for the report generation tab.
Returns file paths for current study images, sample text fields, and dummy values for prior study.
"""
sample = get_sample_data()
return [
save_temp_image(sample["frontal"]), # frontal image file path
save_temp_image(sample["lateral"]), # lateral image file path
sample["indication"],
sample["technique"],
sample["comparison"],
None, # prior frontal (not used)
None, # prior lateral (not used)
None, # prior report (not used)
False # grounding checkbox default
]
def load_sample_phrase():
"""
Loads sample data for the phrase grounding tab.
Returns file path for the frontal image and a sample phrase.
"""
sample = get_sample_data()
return [save_temp_image(sample["frontal"]), sample["phrase"]]
with gr.Blocks(title="MAIRA-2 Medical Assistant") as demo:
gr.Markdown(
"""
# MAIRA-2 Medical Assistant
**Authentication required** - You need a Hugging Face account and access token to use this model.
1. Get your access token from [https://huggingface.co/settings/tokens](https://huggingface.co/settings/tokens)
2. Request model access at [https://huggingface.co/microsoft/maira-2](https://huggingface.co/microsoft/maira-2)
3. Paste your token below to begin
"""
)
with gr.Row():
hf_token = gr.Textbox(
label="Hugging Face Token",
placeholder="hf_xxxxxxxxxxxxxxxxxxxx",
type="password"
)
login_btn = gr.Button("Authenticate")
login_status = gr.Textbox(label="Authentication Status", interactive=False)
login_btn.click(
login_ui,
inputs=hf_token,
outputs=login_status
)
with gr.Tabs():
with gr.Tab("Report Generation"):
with gr.Row():
with gr.Column():
gr.Markdown("## Current Study")
frontal = gr.Image(label="Frontal View", type="filepath")
lateral = gr.Image(label="Lateral View", type="filepath")
indication = gr.Textbox(label="Clinical Indication")
technique = gr.Textbox(label="Imaging Technique")
comparison = gr.Textbox(label="Comparison")
gr.Markdown("## Prior Study (Optional)")
prior_frontal = gr.Image(label="Prior Frontal View", type="filepath")
prior_lateral = gr.Image(label="Prior Lateral View", type="filepath")
prior_report = gr.Textbox(label="Prior Report")
grounding = gr.Checkbox(label="Include Grounding")
sample_btn = gr.Button("Load Sample Data")
with gr.Column():
report_output = gr.Textbox(label="Generated Report", lines=10)
generate_btn = gr.Button("Generate Report")
sample_btn.click(
load_sample_findings,
outputs=[frontal, lateral, indication, technique, comparison,
prior_frontal, prior_lateral, prior_report, grounding]
)
generate_btn.click(
generate_report_ui,
inputs=[hf_token, frontal, lateral, indication, technique, comparison,
prior_frontal, prior_lateral, prior_report, grounding],
outputs=report_output
)
with gr.Tab("Phrase Grounding"):
with gr.Row():
with gr.Column():
pg_frontal = gr.Image(label="Frontal View", type="filepath")
phrase = gr.Textbox(label="Phrase to Ground")
pg_sample_btn = gr.Button("Load Sample Data")
with gr.Column():
pg_output = gr.Textbox(label="Grounding Result", lines=3)
pg_btn = gr.Button("Find Phrase")
pg_sample_btn.click(
load_sample_phrase,
outputs=[pg_frontal, phrase]
)
pg_btn.click(
run_phrase_grounding_ui,
inputs=[hf_token, pg_frontal, phrase],
outputs=pg_output
)
demo.launch()