Update app.py
Browse files
app.py
CHANGED
|
@@ -1,67 +1,59 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
-
from
|
|
|
|
|
|
|
| 3 |
from PIL import Image
|
| 4 |
import torch
|
| 5 |
|
| 6 |
-
# Load model
|
| 7 |
-
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
| 15 |
)
|
| 16 |
|
| 17 |
def analyze_medical_image(image, question):
|
| 18 |
-
#
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
text=prompt,
|
| 24 |
-
images=image,
|
| 25 |
-
return_tensors="pt",
|
| 26 |
-
padding=True
|
| 27 |
-
).to("cpu")
|
| 28 |
|
| 29 |
-
#
|
| 30 |
-
|
| 31 |
-
outputs = model.generate(
|
| 32 |
-
**inputs,
|
| 33 |
-
max_new_tokens=256,
|
| 34 |
-
do_sample=True,
|
| 35 |
-
temperature=0.7,
|
| 36 |
-
top_p=0.9
|
| 37 |
-
)
|
| 38 |
|
| 39 |
-
#
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 44 |
|
| 45 |
-
return
|
| 46 |
|
| 47 |
# Gradio interface
|
| 48 |
with gr.Blocks() as demo:
|
| 49 |
-
gr.Markdown("# LLaVA-Med Medical Analysis
|
| 50 |
-
gr.Markdown("Official Microsoft LLaVA-Med 1.5-Mistral-7B implementation")
|
| 51 |
-
|
| 52 |
with gr.Row():
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
)
|
| 66 |
-
|
| 67 |
-
demo.queue(max_size=5).launch()
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
+
from llava.model.builder import load_pretrained_model
|
| 3 |
+
from llava.mm_utils import get_model_name_from_path
|
| 4 |
+
from llava.eval.run_llava import eval_model
|
| 5 |
from PIL import Image
|
| 6 |
import torch
|
| 7 |
|
| 8 |
+
# Load model configuration
|
| 9 |
+
model_path = "microsoft/llava-med-v1.5-mistral-7b"
|
| 10 |
+
model_name = get_model_name_from_path(model_path)
|
| 11 |
+
tokenizer, model, image_processor, _ = load_pretrained_model(
|
| 12 |
+
model_path=model_path,
|
| 13 |
+
model_base=None,
|
| 14 |
+
model_name=model_name,
|
| 15 |
+
device_map="cpu",
|
| 16 |
+
load_4bit=False
|
| 17 |
)
|
| 18 |
|
| 19 |
def analyze_medical_image(image, question):
|
| 20 |
+
# Convert Gradio input to PIL Image
|
| 21 |
+
if isinstance(image, str):
|
| 22 |
+
image = Image.open(image)
|
| 23 |
+
else:
|
| 24 |
+
image = Image.fromarray(image)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 25 |
|
| 26 |
+
# Prepare prompt
|
| 27 |
+
prompt = f"<image>\nUSER: {question}\nASSISTANT:"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 28 |
|
| 29 |
+
# Run inference
|
| 30 |
+
args = type('Args', (), {
|
| 31 |
+
"model_name": model_name,
|
| 32 |
+
"query": prompt,
|
| 33 |
+
"conv_mode": None,
|
| 34 |
+
"image_file": image,
|
| 35 |
+
"sep": ",",
|
| 36 |
+
"temperature": 0.2,
|
| 37 |
+
"top_p": None,
|
| 38 |
+
"num_beams": 1,
|
| 39 |
+
"max_new_tokens": 512
|
| 40 |
+
})()
|
| 41 |
|
| 42 |
+
return eval_model(args, tokenizer, model, image_processor)
|
| 43 |
|
| 44 |
# Gradio interface
|
| 45 |
with gr.Blocks() as demo:
|
| 46 |
+
gr.Markdown("# LLaVA-Med Medical Analysis")
|
|
|
|
|
|
|
| 47 |
with gr.Row():
|
| 48 |
+
gr.Image(type="pil", label="Input Image", source="upload", elem_id="image")
|
| 49 |
+
gr.Textbox(label="Question", placeholder="Ask about the medical image...")
|
| 50 |
+
gr.Textbox(label="Analysis Result", interactive=False)
|
| 51 |
+
|
| 52 |
+
examples = [
|
| 53 |
+
["examples/xray.jpg", "Are there any signs of pneumonia in this chest X-ray?"],
|
| 54 |
+
["examples/mri.jpg", "What abnormalities are visible in this brain MRI?"]
|
| 55 |
+
]
|
| 56 |
+
|
| 57 |
+
gr.Examples(examples=examples, inputs=[image, question])
|
| 58 |
+
|
| 59 |
+
demo.launch()
|
|
|
|
|
|
|
|
|