File size: 11,902 Bytes
f18a5e1
 
 
 
 
 
 
 
 
 
 
 
 
 
7e225aa
 
 
 
f18a5e1
 
6efe11e
f18a5e1
 
 
 
 
 
 
 
 
 
 
 
 
6efe11e
f18a5e1
6efe11e
 
b2ee56b
 
 
 
 
6efe11e
 
f18a5e1
b2ee56b
f18a5e1
 
b2ee56b
f18a5e1
 
b2ee56b
f18a5e1
6efe11e
f18a5e1
6efe11e
 
 
 
f18a5e1
 
 
 
6efe11e
 
 
 
 
 
 
f18a5e1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6efe11e
f18a5e1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
079a08e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7e225aa
 
 
f18a5e1
b88647e
6efe11e
f18a5e1
 
 
079a08e
 
 
48009b1
 
079a08e
48009b1
 
 
 
 
 
f18a5e1
 
 
48009b1
f18a5e1
 
 
 
48009b1
 
 
 
 
 
 
f18a5e1
7e225aa
 
48009b1
7e225aa
 
 
 
48009b1
 
 
 
7e225aa
 
48009b1
 
 
 
 
 
 
 
7e225aa
 
 
 
 
 
f18a5e1
 
 
079a08e
 
 
 
f18a5e1
 
079a08e
f18a5e1
 
 
 
079a08e
6efe11e
 
 
7e225aa
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
import streamlit as st
from menu import menu_with_redirect

# Standard imports
import numpy as np
import pandas as pd
import torch
import torch.nn as nn
import torch.nn.functional as F

# Path manipulation
from pathlib import Path
from huggingface_hub import hf_hub_download

# Plotting
import matplotlib.pyplot as plt
plt.rcParams['font.sans-serif'] = 'Arial'

# Custom and other imports
import project_config
from utils import capitalize_after_slash, load_kg

# Redirect to app.py if not logged in, otherwise show the navigation menu
menu_with_redirect()

# Header
st.image(str(project_config.MEDIA_DIR / 'predict_header.svg'), use_column_width=True)

# Main content
# st.markdown(f"Hello, {st.session_state.name}!")

st.subheader(f"{capitalize_after_slash(st.session_state.query['target_node_type'])} Search", divider = "blue")

# Print current query
st.markdown(f"**Query:** {st.session_state.query['source_node'].replace('_', ' ')} ➡️ {st.session_state.query['relation'].replace('_', '-')} ➡️ {st.session_state.query['target_node_type'].replace('_', ' ')}")

@st.cache_data(show_spinner = 'Downloading AI model...')
def get_embeddings():
    # Get checkpoint name
    # best_ckpt = "2024_05_22_11_59_43_epoch=18-step=22912"
    best_ckpt = "2024_05_15_13_05_33_epoch=2-step=40383"
    # best_ckpt = "2024_03_29_04_12_52_epoch=3-step=54291"

    # Get paths to embeddings, relation weights, and edge types
    # with st.spinner('Downloading AI model...'):
    embed_path = hf_hub_download(repo_id="ayushnoori/galaxy",
                                filename=(best_ckpt + "-thresh=4000_embeddings.pt"),
                                token=st.secrets["HF_TOKEN"])
    relation_weights_path = hf_hub_download(repo_id="ayushnoori/galaxy",
                                            filename=(best_ckpt + "_relation_weights.pt"),
                                            token=st.secrets["HF_TOKEN"])
    edge_types_path = hf_hub_download(repo_id="ayushnoori/galaxy",
                                        filename=(best_ckpt + "_edge_types.pt"),
                                        token=st.secrets["HF_TOKEN"])
    return embed_path, relation_weights_path, edge_types_path

@st.cache_data(show_spinner = 'Loading AI model...')
def load_embeddings(embed_path, relation_weights_path, edge_types_path):
    # Load embeddings, relation weights, and edge types
    # with st.spinner('Loading AI model...'):
    embeddings = torch.load(embed_path)
    relation_weights = torch.load(relation_weights_path)
    edge_types = torch.load(edge_types_path)

    return embeddings, relation_weights, edge_types

# Load knowledge graph and embeddings
kg_nodes = load_kg()
embed_path, relation_weights_path, edge_types_path = get_embeddings()
embeddings, relation_weights, edge_types = load_embeddings(embed_path, relation_weights_path, edge_types_path)

# # Print source node type
# st.write(f"Source Node Type: {st.session_state.query['source_node_type']}")

# # Print source node
# st.write(f"Source Node: {st.session_state.query['source_node']}")

# # Print relation
# st.write(f"Edge Type: {st.session_state.query['relation']}")

# # Print target node type
# st.write(f"Target Node Type: {st.session_state.query['target_node_type']}")

# Compute predictions
with st.spinner('Computing predictions...'):

    source_node_type = st.session_state.query['source_node_type']
    source_node = st.session_state.query['source_node']
    relation = st.session_state.query['relation']
    target_node_type = st.session_state.query['target_node_type']

    # Get source node index
    src_index = kg_nodes[(kg_nodes.node_type == source_node_type) & (kg_nodes.node_name == source_node)].node_index.values[0]

    # Get relation index
    edge_type_index = [i for i, etype in enumerate(edge_types) if etype == (source_node_type, relation, target_node_type)][0]

    # Get target nodes indices
    target_nodes = kg_nodes[kg_nodes.node_type == target_node_type].copy()
    dst_indices = target_nodes.node_index.values
    src_indices = np.repeat(src_index, len(dst_indices))

    # Retrieve cached embeddings and apply activation function
    src_embeddings = embeddings[src_indices]
    dst_embeddings = embeddings[dst_indices]
    src_embeddings = F.leaky_relu(src_embeddings)
    dst_embeddings = F.leaky_relu(dst_embeddings)

    # Get relation weights
    rel_weights = relation_weights[edge_type_index]

    # Compute weighted dot product
    scores = torch.sum(src_embeddings * rel_weights * dst_embeddings, dim = 1)
    scores = torch.sigmoid(scores)

    # Add scores to dataframe
    target_nodes['score'] = scores.detach().numpy()
    target_nodes = target_nodes.sort_values(by = 'score', ascending = False)
    target_nodes['rank'] = np.arange(1, target_nodes.shape[0] + 1)

    # Rename columns
    display_data = target_nodes[['rank', 'node_id', 'node_name', 'score', 'node_source']].copy()
    display_data = display_data.rename(columns = {'rank': 'Rank', 'node_id': 'ID', 'node_name': 'Name', 'score': 'Score', 'node_source': 'Database'})

    # Define dictionary mapping node types to database URLs
    map_dbs = {
        'gene/protein': lambda x: f"https://ncbi.nlm.nih.gov/gene/?term={x}",
        'drug': lambda x: f"https://go.drugbank.com/drugs/{x}",
        'effect/phenotype': lambda x: f"https://hpo.jax.org/app/browse/term/HP:{x.zfill(7)}", # pad with 0s to 7 digits
        'disease': lambda x: x, # MONDO
        # pad with 0s to 7 digits
        'biological_process': lambda x: f"https://amigo.geneontology.org/amigo/term/GO:{x.zfill(7)}", 
        'molecular_function': lambda x: f"https://amigo.geneontology.org/amigo/term/GO:{x.zfill(7)}",
        'cellular_component': lambda x: f"https://amigo.geneontology.org/amigo/term/GO:{x.zfill(7)}",
        'exposure': lambda x: f"https://ctdbase.org/detail.go?type=chem&acc={x}",
        'pathway': lambda x: f"https://reactome.org/content/detail/{x}",
        'anatomy': lambda x: x,
    }

    # Get name of database
    display_database = display_data['Database'].values[0] 

    # Add URLs to database column
    display_data['Database'] = display_data.apply(lambda x: map_dbs[target_node_type](x['ID']), axis = 1)

    # Check if validation data exists
    if 'validation' in st.session_state:

        # Checkbox to allow reverse edges
        show_val = st.checkbox("Show Ground Truth Validation?", value = False)

        if show_val:

            # Get validation data
            val_results = st.session_state.validation.copy()

            # Merge with predictions
            val_display_data = pd.merge(display_data, val_results, left_on = 'ID', right_on = 'y_id', how='left')
            val_display_data = val_display_data.fillna(0).drop(columns='y_id')

            # Get new columns
            val_relations = val_display_data.columns.difference(display_data.columns).tolist()

            # Replace 0 with blank and 1 with check emoji in new columns
            for col in val_relations:
                val_display_data[col] = val_display_data[col].replace({0: '', 1: '✅'})

            # Define a function to apply styles
            def style_val(val):
                if val == '✅':
                    return 'background-color: #C2EABD;' #  text-align: center;
                return 'background-color: #F5F5F5;' # text-align: center;

    else:
        show_val = False


    # NODE SEARCH

    # Use multiselect to search for specific nodes
    selected_nodes = st.multiselect(f"Search for specific {target_node_type.replace('_', ' ')} nodes to determine their ranking.",
                                    display_data.Name, placeholder = "Type to search...")

    # Filter nodes
    if len(selected_nodes) > 0:

        if show_val:
            # selected_display_data = val_display_data[val_display_data.Name.isin(selected_nodes)]
            selected_display_data = val_display_data[val_display_data.Name.isin(selected_nodes)].copy()
            selected_display_data = selected_display_data.reset_index(drop=True).style.map(style_val, subset=val_relations)
        else:
            selected_display_data = display_data[display_data.Name.isin(selected_nodes)].copy()
            selected_display_data = selected_display_data.reset_index(drop=True)

        st.markdown(f"Out of {target_nodes.shape[0]} {target_node_type} nodes, the selected nodes rank as follows:")
        selected_display_data_with_rank = selected_display_data.copy()
        selected_display_data_with_rank['Rank'] = selected_display_data_with_rank['Rank'].apply(lambda x: f"{x} (top {(100*x/target_nodes.shape[0]):.2f}% of predictions)")

        # Show filtered nodes
        if target_node_type not in ['disease', 'anatomy']:
            st.dataframe(selected_display_data_with_rank, use_container_width = True, hide_index = True,
                        column_config={"Database": st.column_config.LinkColumn(width = "small",
                                                                               help = "Click to visit external database.",
                                                                               display_text = display_database)})
        else:
            st.dataframe(selected_display_data_with_rank, use_container_width = True)

        # Show plot
        st.markdown(f"In the plot below, the dashed lines represent the rank of the selected {target_node_type} nodes across all predictions for {source_node}.")

        # Checkbox to show text labels
        show_labels = st.checkbox("Show Text Labels?", value = False)

        # Plot rank vs. score using matplotlib
        fig, ax = plt.subplots(figsize = (10, 6))
        ax.plot(display_data['Rank'], display_data['Score'], color = 'black', linewidth = 1.5, zorder = 2)
        ax.set_xlabel('Rank', fontsize = 12)
        ax.set_ylabel('Score', fontsize = 12)
        ax.set_xlim(1, display_data['Rank'].max())

        # Get color palette
        # palette = plt.cm.get_cmap('tab10', len(selected_display_data))
        palette = ["#1f77b4", "#ff7f0e", "#2ca02c", "#d62728", "#9467bd", "#8c564b", "#e377c2", "#7f7f7f", "#bcbd22", "#17becf"]

        # Add vertical line for selected nodes
        for i, node in selected_display_data.iterrows():
            ax.scatter(node['Rank'], node['Score'], color = palette[i], zorder=3)
            ax.axvline(node['Rank'], color = palette[i], linestyle = '--', linewidth = 1.5, label = node['Name'], zorder=3)
            if show_labels:
                ax.text(node['Rank'] + 100, node['Score'], node['Name'], fontsize = 10, color = palette[i], zorder=3)

        # Add legend
        ax.legend(loc = 'upper right', fontsize = 10)
        ax.grid(alpha = 0.2, zorder=0)

        st.pyplot(fig)
    
    
    # FULL RESULTS

    # Show top ranked nodes
    st.subheader("Model Predictions", divider = "blue")
    top_k = st.slider('Select number of top ranked nodes to show.', 1, target_nodes.shape[0], min(500, target_nodes.shape[0])) 

    # Show full results
    # full_results = val_display_data.iloc[:top_k] if show_val else display_data.iloc[:top_k]
    full_results = val_display_data.iloc[:top_k].style.map(style_val, subset=val_relations) if show_val else display_data.iloc[:top_k]
    
    if target_node_type not in ['disease', 'anatomy']:
        st.dataframe(full_results, use_container_width = True, hide_index = True,
                    column_config={"Database": st.column_config.LinkColumn(width = "small",
                                                                           help = "Click to visit external database.",
                                                                           display_text = display_database)})
    else:
        st.dataframe(full_results, use_container_width = True, hide_index = True,)

    # Save to session state
    st.session_state.predictions = display_data
    st.session_state.display_database = display_database