Spaces:
Sleeping
Sleeping
import streamlit as st | |
from menu import menu_with_redirect | |
# Standard imports | |
import numpy as np | |
import pandas as pd | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
# Path manipulation | |
from pathlib import Path | |
from huggingface_hub import hf_hub_download | |
# Plotting | |
import matplotlib.pyplot as plt | |
plt.rcParams['font.sans-serif'] = 'Arial' | |
# Custom and other imports | |
import project_config | |
from utils import capitalize_after_slash, load_kg | |
# Redirect to app.py if not logged in, otherwise show the navigation menu | |
menu_with_redirect() | |
# Header | |
st.image(str(project_config.MEDIA_DIR / 'predict_header.svg'), use_column_width=True) | |
# Main content | |
# st.markdown(f"Hello, {st.session_state.name}!") | |
st.subheader(f"{capitalize_after_slash(st.session_state.query['target_node_type'])} Search", divider = "blue") | |
# Print current query | |
st.markdown(f"**Query:** {st.session_state.query['source_node'].replace('_', ' ')} ➡️ {st.session_state.query['relation'].replace('_', '-')} ➡️ {st.session_state.query['target_node_type'].replace('_', ' ')}") | |
def get_embeddings(): | |
# Get checkpoint name | |
# best_ckpt = "2024_05_22_11_59_43_epoch=18-step=22912" | |
best_ckpt = "2024_05_15_13_05_33_epoch=2-step=40383" | |
# best_ckpt = "2024_03_29_04_12_52_epoch=3-step=54291" | |
# Get paths to embeddings, relation weights, and edge types | |
# with st.spinner('Downloading AI model...'): | |
embed_path = hf_hub_download(repo_id="ayushnoori/galaxy", | |
filename=(best_ckpt + "-thresh=4000_embeddings.pt"), | |
token=st.secrets["HF_TOKEN"]) | |
relation_weights_path = hf_hub_download(repo_id="ayushnoori/galaxy", | |
filename=(best_ckpt + "_relation_weights.pt"), | |
token=st.secrets["HF_TOKEN"]) | |
edge_types_path = hf_hub_download(repo_id="ayushnoori/galaxy", | |
filename=(best_ckpt + "_edge_types.pt"), | |
token=st.secrets["HF_TOKEN"]) | |
return embed_path, relation_weights_path, edge_types_path | |
def load_embeddings(embed_path, relation_weights_path, edge_types_path): | |
# Load embeddings, relation weights, and edge types | |
# with st.spinner('Loading AI model...'): | |
embeddings = torch.load(embed_path) | |
relation_weights = torch.load(relation_weights_path) | |
edge_types = torch.load(edge_types_path) | |
return embeddings, relation_weights, edge_types | |
# Load knowledge graph and embeddings | |
kg_nodes = load_kg() | |
embed_path, relation_weights_path, edge_types_path = get_embeddings() | |
embeddings, relation_weights, edge_types = load_embeddings(embed_path, relation_weights_path, edge_types_path) | |
# # Print source node type | |
# st.write(f"Source Node Type: {st.session_state.query['source_node_type']}") | |
# # Print source node | |
# st.write(f"Source Node: {st.session_state.query['source_node']}") | |
# # Print relation | |
# st.write(f"Edge Type: {st.session_state.query['relation']}") | |
# # Print target node type | |
# st.write(f"Target Node Type: {st.session_state.query['target_node_type']}") | |
# Compute predictions | |
with st.spinner('Computing predictions...'): | |
source_node_type = st.session_state.query['source_node_type'] | |
source_node = st.session_state.query['source_node'] | |
relation = st.session_state.query['relation'] | |
target_node_type = st.session_state.query['target_node_type'] | |
# Get source node index | |
src_index = kg_nodes[(kg_nodes.node_type == source_node_type) & (kg_nodes.node_name == source_node)].node_index.values[0] | |
# Get relation index | |
edge_type_index = [i for i, etype in enumerate(edge_types) if etype == (source_node_type, relation, target_node_type)][0] | |
# Get target nodes indices | |
target_nodes = kg_nodes[kg_nodes.node_type == target_node_type].copy() | |
dst_indices = target_nodes.node_index.values | |
src_indices = np.repeat(src_index, len(dst_indices)) | |
# Retrieve cached embeddings and apply activation function | |
src_embeddings = embeddings[src_indices] | |
dst_embeddings = embeddings[dst_indices] | |
src_embeddings = F.leaky_relu(src_embeddings) | |
dst_embeddings = F.leaky_relu(dst_embeddings) | |
# Get relation weights | |
rel_weights = relation_weights[edge_type_index] | |
# Compute weighted dot product | |
scores = torch.sum(src_embeddings * rel_weights * dst_embeddings, dim = 1) | |
scores = torch.sigmoid(scores) | |
# Add scores to dataframe | |
target_nodes['score'] = scores.detach().numpy() | |
target_nodes = target_nodes.sort_values(by = 'score', ascending = False) | |
target_nodes['rank'] = np.arange(1, target_nodes.shape[0] + 1) | |
# Rename columns | |
display_data = target_nodes[['rank', 'node_id', 'node_name', 'score', 'node_source']].copy() | |
display_data = display_data.rename(columns = {'rank': 'Rank', 'node_id': 'ID', 'node_name': 'Name', 'score': 'Score', 'node_source': 'Database'}) | |
# Define dictionary mapping node types to database URLs | |
map_dbs = { | |
'gene/protein': lambda x: f"https://ncbi.nlm.nih.gov/gene/?term={x}", | |
'drug': lambda x: f"https://go.drugbank.com/drugs/{x}", | |
'effect/phenotype': lambda x: f"https://hpo.jax.org/app/browse/term/HP:{x.zfill(7)}", # pad with 0s to 7 digits | |
'disease': lambda x: x, # MONDO | |
# pad with 0s to 7 digits | |
'biological_process': lambda x: f"https://amigo.geneontology.org/amigo/term/GO:{x.zfill(7)}", | |
'molecular_function': lambda x: f"https://amigo.geneontology.org/amigo/term/GO:{x.zfill(7)}", | |
'cellular_component': lambda x: f"https://amigo.geneontology.org/amigo/term/GO:{x.zfill(7)}", | |
'exposure': lambda x: f"https://ctdbase.org/detail.go?type=chem&acc={x}", | |
'pathway': lambda x: f"https://reactome.org/content/detail/{x}", | |
'anatomy': lambda x: x, | |
} | |
# Get name of database | |
display_database = display_data['Database'].values[0] | |
# Add URLs to database column | |
display_data['Database'] = display_data.apply(lambda x: map_dbs[target_node_type](x['ID']), axis = 1) | |
# NODE SEARCH | |
# Use multiselect to search for specific nodes | |
selected_nodes = st.multiselect(f"Search for specific {st.session_state.query['source_node_type'].replace('_', ' ')} nodes to determine their ranking.", | |
display_data.Name, placeholder = "Type to search...") | |
# Filter nodes | |
if len(selected_nodes) > 0: | |
selected_display_data = display_data[display_data.Name.isin(selected_nodes)] | |
# Show filtered nodes | |
if target_node_type not in ['disease', 'anatomy']: | |
st.dataframe(selected_display_data, use_container_width = True, | |
column_config={"Database": st.column_config.LinkColumn(width = "small", | |
help = "Click to visit external database.", | |
display_text = display_database)}) | |
else: | |
st.dataframe(selected_display_data, use_container_width = True) | |
# Plot rank vs. score using matplotlib | |
st.markdown("**Rank vs. Score**") | |
fig, ax = plt.subplots(figsize = (10, 6)) | |
ax.plot(display_data['Rank'], display_data['Score']) | |
ax.set_xlabel('Rank', fontsize = 12) | |
ax.set_ylabel('Score', fontsize = 12) | |
ax.set_xlim(1, display_data['Rank'].max()) | |
# Add vertical line for selected nodes | |
for i, node in selected_display_data.iterrows(): | |
ax.axvline(node['Rank'], color = 'red', linestyle = '--', label = node['Name']) | |
ax.text(node['Rank'] + 100, node['Score'], node['Name'], fontsize = 10, color = 'red') | |
# Show plot | |
st.pyplot(fig) | |
# FULL RESULTS | |
# Show top ranked nodes | |
st.subheader("Model Predictions", divider = "blue") | |
top_k = st.slider('Select number of top ranked nodes to show.', 1, target_nodes.shape[0], min(500, target_nodes.shape[0])) | |
if target_node_type not in ['disease', 'anatomy']: | |
st.dataframe(display_data.iloc[:top_k], use_container_width = True, | |
column_config={"Database": st.column_config.LinkColumn(width = "small", | |
help = "Click to visit external database.", | |
display_text = display_database)}) | |
else: | |
st.dataframe(display_data.iloc[:top_k], use_container_width = True) | |
# Save to session state | |
st.session_state.predictions = display_data | |
st.session_state.display_database = display_database | |