File size: 23,881 Bytes
87fdfe1 2a550bb 87fdfe1 2a550bb 87fdfe1 2a550bb 87fdfe1 2a550bb 236f289 87fdfe1 2a550bb 87fdfe1 2a550bb 87fdfe1 2a550bb 87fdfe1 2a550bb 87fdfe1 2a550bb 87fdfe1 2a550bb 87fdfe1 2a550bb 87fdfe1 2a550bb 87fdfe1 2a550bb 87fdfe1 2a550bb 87fdfe1 2a550bb 87fdfe1 2a550bb 87fdfe1 2a550bb 87fdfe1 2a550bb 87fdfe1 2a550bb 87fdfe1 2a550bb 87fdfe1 2a550bb 87fdfe1 2a550bb 87fdfe1 2a550bb 87fdfe1 2a550bb 87fdfe1 2a550bb 87fdfe1 2a550bb 87fdfe1 2a550bb 87fdfe1 2a550bb 87fdfe1 2a550bb 87fdfe1 2a550bb 87fdfe1 2a550bb 87fdfe1 2a550bb 87fdfe1 2a550bb 87fdfe1 2a550bb 87fdfe1 2a550bb 87fdfe1 2a550bb 87fdfe1 2a550bb 87fdfe1 2a550bb 87fdfe1 2a550bb 87fdfe1 2a550bb 87fdfe1 2a550bb 87fdfe1 2a550bb 9ed2f84 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 |
import streamlit as st
import os
import pandas as pd
import re
from groq import Groq
from datetime import datetime
# Set page config
st.set_page_config(page_title="AI Medical Consultancy", layout="wide")
# Load custom CSS
def load_css():
try:
with open("style.css") as f:
st.markdown(f"<style>{f.read()}</style>", unsafe_allow_html=True)
except FileNotFoundError:
st.warning("CSS file not found. Please ensure 'style.css' is in the directory.")
load_css()
# Initialize session state variables
if 'current_step' not in st.session_state:
st.session_state.current_step = 0
if 'symptom_details' not in st.session_state:
st.session_state.symptom_details = []
if 'patient_info' not in st.session_state:
st.session_state.patient_info = {}
if 'appointment_details' not in st.session_state:
st.session_state.appointment_details = None
if 'appointment_summary' not in st.session_state:
st.session_state.appointment_summary = None
if 'analysis_results' not in st.session_state:
st.session_state.analysis_results = None
class MedicalAnalysisSystem:
def _init_(self, dataset_path):
try:
self.data = pd.read_csv(dataset_path)
print("Dataset Columns:", self.data.columns.tolist()) # Debug
print("Sample Data:\n", self.data.head()) # Debug
# Clean data - remove placeholder rows
self.data = self.data[~self.data['Symptom'].str.contains('Symptom|Condition', case=False)]
self.data['Risk Score'] = pd.to_numeric(self.data['Risk Score'], errors='coerce')
# Handle missing values
self.data['Risk Score'] = self.data['Risk Score'].fillna(0)
# Calculate MAX_RISK_SCORE dynamically
symptom_max_risk = self.data.groupby('Symptom')['Risk Score'].max().sum()
max_age = 120
max_age_risk = (max_age - 40) * 0.05 if max_age > 40 else 0
self.MAX_RISK_SCORE = symptom_max_risk + max_age_risk
self.local_messages = []
self.severity_mapping = {
'Mild': ['mild', 'slight', 'minor', 'low grade'],
'Moderate': ['moderate', 'medium', 'average'],
'Severe': ['severe', 'high', 'extreme', 'critical', 'intense', 'very bad', 'acute']
}
self.negation_words = {'no', 'not', 'denies', 'without', 'negative', 'none', 'denied'}
except Exception as e:
st.error(f"Dataset Error: {str(e)}")
raise
def add_patient_data(self, patient_message):
try:
if not patient_message:
raise ValueError("Patient message cannot be empty")
self.local_messages.append({
'message': patient_message,
'timestamp': datetime.now().timestamp()
})
except Exception as e:
st.error(f"Error adding patient data: {str(e)}")
def extract_info_from_bot_response(self, bot_response_data):
try:
if not bot_response_data:
return 0, [], {}
bot_response_text = str(bot_response_data)
bot_response_lower = bot_response_text.lower()
# Age extraction
age = 0
age_pattern = r'(\d{1,3})\s*(?:years?-?old|yo|years|-years-old?)'
age_match = re.search(age_pattern, bot_response_text, re.IGNORECASE)
if age_match:
age = int(age_match.group(1))
if not (0 <= age <= 120): age = 20
# Symptom extraction
symptoms = []
for symptom in self.data['Symptom'].unique():
symptom_lower = symptom.lower()
pattern = re.compile(r'\b' + re.escape(symptom_lower) + r'\b', re.IGNORECASE)
matches = pattern.finditer(bot_response_lower)
for match in matches:
start_pos = match.start()
preceding_text = bot_response_lower[:start_pos].split()
preceding_words = preceding_text[-3:]
if not any(neg in preceding_words for neg in self.negation_words):
symptoms.append(symptom)
break
# Severity analysis
symptom_severity = {}
for symptom in symptoms:
symptom_lower = symptom.lower()
highest_severity_score = 0
pattern = re.compile(r'\b' + re.escape(symptom_lower) + r'\b', re.IGNORECASE)
matches = pattern.finditer(bot_response_lower)
for match in matches:
start, end = match.start(), match.end()
words = bot_response_lower.split()
match_index = len(bot_response_lower[:start].split())
context_start = max(0, match_index - 5)
context_end = min(len(words), match_index + 6)
context = ' '.join(words[context_start:context_end])
for severity, keywords in self.severity_mapping.items():
for keyword in keywords:
if re.search(r'\b' + re.escape(keyword) + r'\b', context):
condition_data = self.data[(self.data['Symptom'] == symptom) &
(self.data['Condition'] == severity)]
if not condition_data.empty:
risk_score = condition_data['Risk Score'].values[0]
if risk_score > highest_severity_score:
highest_severity_score = risk_score
if highest_severity_score == 0:
highest_severity_score = self.data[self.data['Symptom'] == symptom]['Risk Score'].max()
symptom_severity[symptom] = highest_severity_score
return age, symptoms, symptom_severity
except Exception as e:
st.error(f"Extraction Error: {str(e)}")
return 0, [], {}
def calculate_risk_score(self, age, symptoms, symptom_severity):
try:
# Validate symptoms
valid_symptoms = [s for s in symptoms if s in self.data['Symptom'].values]
if not valid_symptoms:
return "Unknown", 0, 0
# Calculate scores with validation
symptom_risk = sum(float(symptom_severity.get(s, 0)) for s in valid_symptoms)
age_risk = max((age - 40) * 0.05, 0) if age >= 40 else 0
final_score = symptom_risk + age_risk
# Ensure we don't divide by zero
max_score = self.MAX_RISK_SCORE if self.MAX_RISK_SCORE > 0 else 1
risk_pct = min(100, max(0, (final_score / max_score) * 100))
if risk_pct <= 30: label = "Low"
elif risk_pct <= 70: label = "Medium"
else: label = "High"
return label, final_score, round(risk_pct, 1)
except Exception as e:
st.error(f"Risk Calculation Error: {str(e)}")
return "Low", 0, 0
def analyze_patient_data(self, patient_message):
"""Full analysis workflow"""
try:
# Clean input message
patient_message = patient_message.replace("Symptom", "").replace("Condition", "")
self.add_patient_data(patient_message)
age, symptoms, severity = self.extract_info_from_bot_response(patient_message)
# Filter invalid symptoms
valid_symptoms = [s for s in symptoms if s in self.data['Symptom'].values]
if not valid_symptoms:
return {"error": "No valid symptoms detected"}
# Get unique conditions from valid symptoms
conditions = self.data[self.data['Symptom'].isin(valid_symptoms)]['Condition'].unique()
valid_conditions = [c for c in conditions if c not in ['Normal', 'Moderate', 'Severe', 'Condition']]
risk_label, risk_score, risk_pct = self.calculate_risk_score(age, valid_symptoms, severity)
return {
'age': age,
'symptoms': valid_symptoms,
'symptom_severity': severity,
'risk_label': risk_label,
'risk_score': round(risk_score, 2),
'risk_percentage': risk_pct,
'possible_conditions': valid_conditions,
'analysis_timestamp': datetime.now().isoformat()
}
except Exception as e:
return {"error": f"Analysis Error: {str(e)}"}
def process_user_data(self):
try:
if not self.local_messages:
return {"error": "No messages available"}
latest = max(self.local_messages, key=lambda x: x['timestamp'])
age, symptoms, severity = self.extract_info_from_bot_response(latest['message'])
if not symptoms: return {"error": "No symptoms detected"}
risk_label, risk_score, risk_pct = self.calculate_risk_score(age, symptoms, severity)
return {
'age': age,
'symptoms': symptoms,
'symptom_severity': severity,
'risk_label': risk_label,
'risk_score': round(risk_score, 2),
'risk_percentage': risk_pct,
'possible_conditions': self.data[self.data['Symptom'].isin(symptoms)]['Condition'].unique().tolist(),
'analysis_timestamp': datetime.now().isoformat()
}
except Exception as e:
return {"error": f"Processing Error: {str(e)}"}
def initialize_groq_client():
try:
api_key = st.secrets.get("GROQ_API_KEY", os.getenv("GROQ_API_KEY"))
if not api_key:
api_key = st.text_input("Enter Groq API Key:", type="password")
if not api_key: return False
st.session_state.client = Groq(api_key=api_key)
return True
except Exception as e:
st.error(f"Groq Error: {str(e)}")
return False
def symptom_interrogation_step():
client = st.session_state.client
main_symptom = st.session_state.patient_info['main_symptom']
step = len(st.session_state.symptom_details)
if step == 0:
medical_focus = {
'pain': "location/radiation/provoking factors",
'fever': "pattern/associated symptoms/response to meds",
'gi': "bowel changes/ingestion timing/associated symptoms",
'respiratory': "exertion relationship/sputum/triggers"
}
focus = medical_focus.get(main_symptom.lower(), "temporal pattern/severity progression/associated symptoms")
prompt = f"""As an ER physician, ask ONE high-yield question about {main_symptom}
focusing on {focus}. Use simple, patient-friendly language. Ask only ONE question."""
else:
last_qa = st.session_state.symptom_details[-1]
prompt = f"""Based on previous Q: {last_qa['question']} β A: {last_qa['answer']}
Ask the NEXT critical question about {main_symptom} considering red flags."""
try:
response = client.chat.completions.create(
messages=[{"role": "user", "content": prompt}],
model="mixtral-8x7b-32768",
temperature=0.3
)
question = response.choices[0].message.content.strip()
if not question.endswith('?'): question += '?'
st.session_state.current_question = question
except Exception as e:
st.error(f"Question Generation Error: {str(e)}")
st.stop()
def handle_symptom_interrogation():
st.header("Symptom Analysis")
if st.session_state.current_step == 1:
symptom_interrogation_step()
st.session_state.current_step = 2
if 'current_question' in st.session_state:
with st.form("symptom_qna"):
st.markdown(f'<div class="dr-message">π¨ββ {st.session_state.current_question}</div>', unsafe_allow_html=True)
answer = st.text_input("Your answer:", key=f"answer_{len(st.session_state.symptom_details)}")
if st.form_submit_button("Next"):
if answer:
st.session_state.symptom_details.append({
"question": st.session_state.current_question,
"answer": answer
})
del st.session_state.current_question
# Emergency check
if len(st.session_state.symptom_details) >= 3:
last_answer = st.session_state.symptom_details[-1]['answer']
try:
urgency_check = st.session_state.client.chat.completions.create(
messages=[{"role": "user", "content": f"Does this indicate emergency? '{last_answer}' Yes/No"}],
model="mixtral-8x7b-32768",
temperature=0
).choices[0].message.content
if 'YES' in urgency_check.upper():
st.markdown('<div class="emergency-alert">π¨ Emergency Detected! Seek Immediate Care.</div>', unsafe_allow_html=True)
st.session_state.current_step = 4
return
except: pass
if len(st.session_state.symptom_details) < 7:
st.session_state.current_step = 1
else:
st.session_state.current_step = 3
st.rerun()
else:
st.warning("Please provide an answer")
def collect_basic_info():
st.header("Patient Information")
with st.form("basic_info"):
st.session_state.patient_info['name'] = st.text_input("Full Name")
st.session_state.patient_info['age'] = st.number_input("Age", min_value=0, max_value=120)
st.session_state.patient_info['gender'] = st.selectbox("Gender", ["Male", "Female", "Other"])
st.session_state.patient_info['main_symptom'] = st.text_input("Main Symptom")
if st.form_submit_button("Next"):
if all(st.session_state.patient_info.get(k) for k in ['name', 'age', 'gender', 'main_symptom']):
st.session_state.current_step = 1
st.rerun()
else:
st.warning("Please fill all fields")
def collect_medical_history():
st.header("Medical History")
with st.form("medical_history"):
st.session_state.patient_info['medical_history'] = st.text_area("Relevant Medical History")
st.session_state.patient_info['medications'] = st.text_area("Current Medications")
st.session_state.patient_info['allergies'] = st.text_input("Known Allergies")
st.session_state.patient_info['last_meal'] = st.text_input("Last Meal Time")
st.session_state.patient_info['recent_travel'] = st.text_input("Recent Travel History")
if st.form_submit_button("Submit"):
st.session_state.current_step = 4
st.rerun()
def generate_risk_assessment():
st.header("Comprehensive Assessment")
try:
# Generate clinical summary
symptom_log = "\n".join([f"Q: {q['question']}\nA: {q['answer']}" for q in st.session_state.symptom_details])
patient_profile = f"""
Name: {st.session_state.patient_info['name']}
Age: {st.session_state.patient_info['age']}
Gender: {st.session_state.patient_info['gender']}
Main Symptom: {st.session_state.patient_info['main_symptom']}
Symptom Details:
{symptom_log}
Medical History: {st.session_state.patient_info.get('medical_history', 'N/A')}
Medications: {st.session_state.patient_info.get('medications', 'N/A')}
Allergies: {st.session_state.patient_info.get('allergies', 'N/A')}
"""
# Risk analysis
analysis_system = MedicalAnalysisSystem("DATASET.csv")
analysis_results = analysis_system.analyze_patient_data(patient_profile)
# Store the analysis results in session state
st.session_state.analysis_results = analysis_results
col1, col2 = st.columns(2)
with col1:
st.subheader("Clinical Summary")
st.markdown(f"\n{patient_profile}\n")
with col2:
st.subheader("Risk Analysis")
if "error" in analysis_results:
st.error(analysis_results["error"])
else:
st.metric("Risk Level", analysis_results['risk_label'])
st.progress(analysis_results['risk_percentage'] / 100)
st.write(f"*Score*: {analysis_results['risk_score']:.1f}/{analysis_system.MAX_RISK_SCORE:.1f}")
# Download report
report_content = f"CLINICAL SUMMARY:\n{patient_profile}\n\nRISK ANALYSIS:\n{analysis_results}"
st.download_button("Download Full Report", report_content, "medical_report.txt")
except Exception as e:
st.error(f"Assessment Error: {str(e)}")
def schedule_appointment():
st.header("π Schedule Specialist Appointment")
# Doctor database
doctors = [
{
'name': 'Dr. Sarah Johnson',
'hospital': 'City General Hospital',
'specialty': 'Cardiology',
'slots': ['2024-03-25 09:00', '2024-03-25 10:00', '2024-03-26 11:00'],
'contact': '555-0101',
'emergency': True
},
{
'name': 'Dr. Michael Chen',
'hospital': 'Metropolitan Health',
'specialty': 'Neurology',
'slots': ['2024-03-25 14:00', '2024-03-26 09:30', '2024-03-27 15:00'],
'contact': '555-0102',
'emergency': True
},
{
'name': 'Dr. Emily White',
'hospital': 'Sunrise Clinic',
'specialty': 'General Practice',
'slots': ['2024-03-24 10:00', '2024-03-25 11:00', '2024-03-26 16:00'],
'contact': '555-0103',
'emergency': False
},
{
'name': 'Dr. Raj Patel',
'hospital': 'Westside Medical Center',
'specialty': 'Orthopedics',
'slots': ['2024-03-25 08:00', '2024-03-26 10:00', '2024-03-27 09:00'],
'contact': '555-0104',
'emergency': True
},
{
'name': 'Dr. Linda Garcia',
'hospital': "Children's Hospital",
'specialty': 'Pediatrics',
'slots': ['2024-03-25 12:00', '2024-03-26 14:00', '2024-03-27 10:00'],
'contact': '555-0105',
'emergency': True
}
]
risk_data = st.session_state.get('analysis_results', {})
# Check if risk_data is None or empty
if not risk_data or "error" in risk_data:
st.error("No risk assessment available. Please complete the assessment first.")
return
risk_label = risk_data.get('risk_label', 'Low')
# Priority explanation
st.markdown(f"""
<div class="priority-banner">
Your current risk level: <strong>{risk_label}</strong> priority
<br>{(risk_label == 'High') and 'π₯ Urgent - Same day appointments available'
or (risk_label == 'Medium') and 'π¨ Semi-Urgent - Next day appointments'
or 'π© Routine - Book within 3 days'}
</div>
""", unsafe_allow_html=True)
# Filter doctors based on risk
if risk_label == 'High':
available_doctors = [d for d in doctors if d['emergency']]
else:
available_doctors = doctors
# Display doctors in columns
cols = st.columns(2)
for idx, doctor in enumerate(available_doctors):
with cols[idx % 2]:
with st.container():
st.subheader(f"π₯ {doctor['hospital']}")
st.markdown(f"""
*Doctor*: {doctor['name']}
*Specialty*: {doctor['specialty']}
*Contact*: {doctor['contact']}
""")
# Sort slots based on risk
slots = sorted(doctor['slots'], key=lambda x: datetime.strptime(x, '%Y-%m-%d %H:%M'))
if risk_label == 'Low':
slots = slots[::-1]
selected_slot = st.selectbox(f"Available slots with {doctor['name']}",
slots,
key=f"slot_{idx}")
if st.button(f"Book with {doctor['name']}", key=f"book_{idx}"):
st.session_state.appointment_details = {
'doctor': doctor['name'],
'hospital': doctor['hospital'],
'time': selected_slot,
'contact': doctor['contact'],
'risk_level': risk_label
}
st.success("Appointment booked successfully!")
st.balloons()
# Generate appointment summary
summary = f"""
*Patient Name*: {st.session_state.patient_info['name']}
*Age*: {st.session_state.patient_info['age']}
*Booked Appointment*:
- Doctor: {doctor['name']}
- Hospital: {doctor['hospital']}
- Time: {selected_slot}
- Contact: {doctor['contact']}
- Priority Level: {risk_label}
"""
st.session_state.appointment_summary = summary
# Show download button
st.download_button("Download Appointment Details",
summary,
"appointment_confirmation.txt",
help="Save your appointment details")
def main():
st.title("π₯ AI Medical Consultancy")
# Initialize Groq client
if not initialize_groq_client():
st.warning("Please provide a valid Groq API key to proceed.")
return
# Define steps for the progress bar
steps = ["Patient Info", "Symptoms", "History", "Report", "Booking"]
# Display progress bar
progress = f"""
<div class="progress-bar">
{"".join(f'<div class="step {"active" if st.session_state.current_step >= i else ""}">{i+1}. {step}</div>'
for i, step in enumerate(steps))}
</div>
"""
st.markdown(progress, unsafe_allow_html=True)
# Step routing logic
if st.session_state.current_step == 0:
collect_basic_info() # Step 1: Collect patient information
elif st.session_state.current_step in [1, 2]:
handle_symptom_interrogation() # Step 2: Symptom analysis
elif st.session_state.current_step == 3:
collect_medical_history() # Step 3: Collect medical history
elif st.session_state.current_step == 4:
generate_risk_assessment() # Step 4: Generate risk assessment
if st.button("π
Schedule Doctor Appointment"):
st.session_state.current_step = 5 # Move to the booking step
st.rerun()
elif st.session_state.current_step == 5:
schedule_appointment() # Step 5: Schedule appointment with a doctor
# Debugging: Show session state (optional)
if st.sidebar.checkbox("Show Session State (Debug)"):
st.sidebar.write(st.session_state)
if _name_ == "_main_":
main() |