File size: 23,881 Bytes
87fdfe1
 
2a550bb
 
87fdfe1
 
 
2a550bb
87fdfe1
 
2a550bb
 
 
 
 
 
 
87fdfe1
2a550bb
236f289
87fdfe1
 
 
 
2a550bb
87fdfe1
 
2a550bb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
87fdfe1
 
 
2a550bb
87fdfe1
2a550bb
 
87fdfe1
2a550bb
87fdfe1
 
2a550bb
87fdfe1
 
 
 
 
2a550bb
87fdfe1
 
 
 
 
 
 
 
2a550bb
87fdfe1
2a550bb
87fdfe1
 
2a550bb
 
87fdfe1
 
 
2a550bb
87fdfe1
 
 
 
2a550bb
87fdfe1
 
2a550bb
87fdfe1
 
 
 
 
 
 
 
 
 
 
2a550bb
87fdfe1
 
 
 
 
 
 
 
 
2a550bb
 
87fdfe1
 
 
 
2a550bb
87fdfe1
 
 
 
2a550bb
87fdfe1
 
2a550bb
 
87fdfe1
 
 
 
2a550bb
87fdfe1
 
 
 
 
 
 
 
 
 
 
 
2a550bb
87fdfe1
 
 
2a550bb
87fdfe1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2a550bb
87fdfe1
 
2a550bb
 
87fdfe1
 
 
 
2a550bb
87fdfe1
2a550bb
87fdfe1
 
2a550bb
 
 
87fdfe1
 
2a550bb
 
 
87fdfe1
2a550bb
 
87fdfe1
2a550bb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
87fdfe1
2a550bb
87fdfe1
2a550bb
 
87fdfe1
2a550bb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
87fdfe1
2a550bb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
87fdfe1
2a550bb
87fdfe1
2a550bb
87fdfe1
2a550bb
 
 
87fdfe1
2a550bb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
87fdfe1
2a550bb
9ed2f84
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
import streamlit as st
import os
import pandas as pd
import re
from groq import Groq
from datetime import datetime

# Set page config
st.set_page_config(page_title="AI Medical Consultancy", layout="wide")

# Load custom CSS
def load_css():
    try:
        with open("style.css") as f:
            st.markdown(f"<style>{f.read()}</style>", unsafe_allow_html=True)
    except FileNotFoundError:
        st.warning("CSS file not found. Please ensure 'style.css' is in the directory.")

load_css()

# Initialize session state variables
if 'current_step' not in st.session_state:
    st.session_state.current_step = 0
if 'symptom_details' not in st.session_state:
    st.session_state.symptom_details = []
if 'patient_info' not in st.session_state:
    st.session_state.patient_info = {}
if 'appointment_details' not in st.session_state:
    st.session_state.appointment_details = None
if 'appointment_summary' not in st.session_state:
    st.session_state.appointment_summary = None
if 'analysis_results' not in st.session_state:
    st.session_state.analysis_results = None

class MedicalAnalysisSystem:
    def _init_(self, dataset_path):
        try:
            self.data = pd.read_csv(dataset_path)
            print("Dataset Columns:", self.data.columns.tolist())  # Debug
            print("Sample Data:\n", self.data.head())  # Debug
            
            # Clean data - remove placeholder rows
            self.data = self.data[~self.data['Symptom'].str.contains('Symptom|Condition', case=False)]
            
            self.data['Risk Score'] = pd.to_numeric(self.data['Risk Score'], errors='coerce')
            # Handle missing values
            self.data['Risk Score'] = self.data['Risk Score'].fillna(0)
            
            # Calculate MAX_RISK_SCORE dynamically
            symptom_max_risk = self.data.groupby('Symptom')['Risk Score'].max().sum()
            max_age = 120
            max_age_risk = (max_age - 40) * 0.05 if max_age > 40 else 0
            self.MAX_RISK_SCORE = symptom_max_risk + max_age_risk
            
            self.local_messages = []
            self.severity_mapping = {
                'Mild': ['mild', 'slight', 'minor', 'low grade'],
                'Moderate': ['moderate', 'medium', 'average'],
                'Severe': ['severe', 'high', 'extreme', 'critical', 'intense', 'very bad', 'acute']
            }
            self.negation_words = {'no', 'not', 'denies', 'without', 'negative', 'none', 'denied'}
        except Exception as e:
            st.error(f"Dataset Error: {str(e)}")
            raise

    def add_patient_data(self, patient_message):
        try:
            if not patient_message:
                raise ValueError("Patient message cannot be empty")
            self.local_messages.append({
                'message': patient_message,
                'timestamp': datetime.now().timestamp()
            })
        except Exception as e:
            st.error(f"Error adding patient data: {str(e)}")

    def extract_info_from_bot_response(self, bot_response_data):
        try:
            if not bot_response_data:
                return 0, [], {}

            bot_response_text = str(bot_response_data)
            bot_response_lower = bot_response_text.lower()

            # Age extraction
            age = 0
            age_pattern = r'(\d{1,3})\s*(?:years?-?old|yo|years|-years-old?)'
            age_match = re.search(age_pattern, bot_response_text, re.IGNORECASE)
            if age_match:
                age = int(age_match.group(1))
                if not (0 <= age <= 120): age = 20

            # Symptom extraction
            symptoms = []
            for symptom in self.data['Symptom'].unique():
                symptom_lower = symptom.lower()
                pattern = re.compile(r'\b' + re.escape(symptom_lower) + r'\b', re.IGNORECASE)
                matches = pattern.finditer(bot_response_lower)
                for match in matches:
                    start_pos = match.start()
                    preceding_text = bot_response_lower[:start_pos].split()
                    preceding_words = preceding_text[-3:]
                    if not any(neg in preceding_words for neg in self.negation_words):
                        symptoms.append(symptom)
                        break

            # Severity analysis
            symptom_severity = {}
            for symptom in symptoms:
                symptom_lower = symptom.lower()
                highest_severity_score = 0
                pattern = re.compile(r'\b' + re.escape(symptom_lower) + r'\b', re.IGNORECASE)
                matches = pattern.finditer(bot_response_lower)
                for match in matches:
                    start, end = match.start(), match.end()
                    words = bot_response_lower.split()
                    match_index = len(bot_response_lower[:start].split())
                    context_start = max(0, match_index - 5)
                    context_end = min(len(words), match_index + 6)
                    context = ' '.join(words[context_start:context_end])
                    for severity, keywords in self.severity_mapping.items():
                        for keyword in keywords:
                            if re.search(r'\b' + re.escape(keyword) + r'\b', context):
                                condition_data = self.data[(self.data['Symptom'] == symptom) & 
                                                          (self.data['Condition'] == severity)]
                                if not condition_data.empty:
                                    risk_score = condition_data['Risk Score'].values[0]
                                    if risk_score > highest_severity_score:
                                        highest_severity_score = risk_score
                if highest_severity_score == 0:
                    highest_severity_score = self.data[self.data['Symptom'] == symptom]['Risk Score'].max()
                symptom_severity[symptom] = highest_severity_score

            return age, symptoms, symptom_severity

        except Exception as e:
            st.error(f"Extraction Error: {str(e)}")
            return 0, [], {}

    def calculate_risk_score(self, age, symptoms, symptom_severity):
        try:
            # Validate symptoms
            valid_symptoms = [s for s in symptoms if s in self.data['Symptom'].values]
            if not valid_symptoms:
                return "Unknown", 0, 0
                
            # Calculate scores with validation
            symptom_risk = sum(float(symptom_severity.get(s, 0)) for s in valid_symptoms)
            age_risk = max((age - 40) * 0.05, 0) if age >= 40 else 0
            final_score = symptom_risk + age_risk
            
            # Ensure we don't divide by zero
            max_score = self.MAX_RISK_SCORE if self.MAX_RISK_SCORE > 0 else 1
            risk_pct = min(100, max(0, (final_score / max_score) * 100))
            
            if risk_pct <= 30: label = "Low"
            elif risk_pct <= 70: label = "Medium"
            else: label = "High"
            
            return label, final_score, round(risk_pct, 1)
        except Exception as e:
            st.error(f"Risk Calculation Error: {str(e)}")
            return "Low", 0, 0

    def analyze_patient_data(self, patient_message):
        """Full analysis workflow"""
        try:
            # Clean input message
            patient_message = patient_message.replace("Symptom", "").replace("Condition", "")
            
            self.add_patient_data(patient_message)
            age, symptoms, severity = self.extract_info_from_bot_response(patient_message)
            
            # Filter invalid symptoms
            valid_symptoms = [s for s in symptoms if s in self.data['Symptom'].values]
            if not valid_symptoms:
                return {"error": "No valid symptoms detected"}
            
            # Get unique conditions from valid symptoms
            conditions = self.data[self.data['Symptom'].isin(valid_symptoms)]['Condition'].unique()
            valid_conditions = [c for c in conditions if c not in ['Normal', 'Moderate', 'Severe', 'Condition']]
            
            risk_label, risk_score, risk_pct = self.calculate_risk_score(age, valid_symptoms, severity)
            
            return {
                'age': age,
                'symptoms': valid_symptoms,
                'symptom_severity': severity,
                'risk_label': risk_label,
                'risk_score': round(risk_score, 2),
                'risk_percentage': risk_pct,
                'possible_conditions': valid_conditions,
                'analysis_timestamp': datetime.now().isoformat()
            }
        except Exception as e:
            return {"error": f"Analysis Error: {str(e)}"}

    def process_user_data(self):
        try:
            if not self.local_messages:
                return {"error": "No messages available"}
            
            latest = max(self.local_messages, key=lambda x: x['timestamp'])
            age, symptoms, severity = self.extract_info_from_bot_response(latest['message'])
            
            if not symptoms: return {"error": "No symptoms detected"}
            
            risk_label, risk_score, risk_pct = self.calculate_risk_score(age, symptoms, severity)
            
            return {
                'age': age,
                'symptoms': symptoms,
                'symptom_severity': severity,
                'risk_label': risk_label,
                'risk_score': round(risk_score, 2),
                'risk_percentage': risk_pct,
                'possible_conditions': self.data[self.data['Symptom'].isin(symptoms)]['Condition'].unique().tolist(),
                'analysis_timestamp': datetime.now().isoformat()
            }
        except Exception as e:
            return {"error": f"Processing Error: {str(e)}"}

def initialize_groq_client():
    try:
        api_key = st.secrets.get("GROQ_API_KEY", os.getenv("GROQ_API_KEY"))
        if not api_key:
            api_key = st.text_input("Enter Groq API Key:", type="password")
            if not api_key: return False
        
        st.session_state.client = Groq(api_key=api_key)
        return True
    except Exception as e:
        st.error(f"Groq Error: {str(e)}")
        return False

def symptom_interrogation_step():
    client = st.session_state.client
    main_symptom = st.session_state.patient_info['main_symptom']
    step = len(st.session_state.symptom_details)

    if step == 0:
        medical_focus = {
            'pain': "location/radiation/provoking factors",
            'fever': "pattern/associated symptoms/response to meds",
            'gi': "bowel changes/ingestion timing/associated symptoms",
            'respiratory': "exertion relationship/sputum/triggers"
        }
        focus = medical_focus.get(main_symptom.lower(), "temporal pattern/severity progression/associated symptoms")
        prompt = f"""As an ER physician, ask ONE high-yield question about {main_symptom}
        focusing on {focus}. Use simple, patient-friendly language. Ask only ONE question."""
    else:
        last_qa = st.session_state.symptom_details[-1]
        prompt = f"""Based on previous Q: {last_qa['question']} β†’ A: {last_qa['answer']}
        Ask the NEXT critical question about {main_symptom} considering red flags."""

    try:
        response = client.chat.completions.create(
            messages=[{"role": "user", "content": prompt}],
            model="mixtral-8x7b-32768",
            temperature=0.3
        )
        question = response.choices[0].message.content.strip()
        if not question.endswith('?'): question += '?'
        st.session_state.current_question = question
    except Exception as e:
        st.error(f"Question Generation Error: {str(e)}")
        st.stop()

def handle_symptom_interrogation():
    st.header("Symptom Analysis")
    
    if st.session_state.current_step == 1:
        symptom_interrogation_step()
        st.session_state.current_step = 2
    
    if 'current_question' in st.session_state:
        with st.form("symptom_qna"):
            st.markdown(f'<div class="dr-message">πŸ‘¨β€βš• {st.session_state.current_question}</div>', unsafe_allow_html=True)
            answer = st.text_input("Your answer:", key=f"answer_{len(st.session_state.symptom_details)}")
            
            if st.form_submit_button("Next"):
                if answer:
                    st.session_state.symptom_details.append({
                        "question": st.session_state.current_question,
                        "answer": answer
                    })
                    del st.session_state.current_question

                    # Emergency check
                    if len(st.session_state.symptom_details) >= 3:
                        last_answer = st.session_state.symptom_details[-1]['answer']
                        try:
                            urgency_check = st.session_state.client.chat.completions.create(
                                messages=[{"role": "user", "content": f"Does this indicate emergency? '{last_answer}' Yes/No"}],
                                model="mixtral-8x7b-32768",
                                temperature=0
                            ).choices[0].message.content
                            if 'YES' in urgency_check.upper():
                                st.markdown('<div class="emergency-alert">🚨 Emergency Detected! Seek Immediate Care.</div>', unsafe_allow_html=True)
                                st.session_state.current_step = 4
                                return
                        except: pass

                    if len(st.session_state.symptom_details) < 7:
                        st.session_state.current_step = 1
                    else:
                        st.session_state.current_step = 3
                    st.rerun()
                else:
                    st.warning("Please provide an answer")

def collect_basic_info():
    st.header("Patient Information")
    with st.form("basic_info"):
        st.session_state.patient_info['name'] = st.text_input("Full Name")
        st.session_state.patient_info['age'] = st.number_input("Age", min_value=0, max_value=120)
        st.session_state.patient_info['gender'] = st.selectbox("Gender", ["Male", "Female", "Other"])
        st.session_state.patient_info['main_symptom'] = st.text_input("Main Symptom")
        
        if st.form_submit_button("Next"):
            if all(st.session_state.patient_info.get(k) for k in ['name', 'age', 'gender', 'main_symptom']):
                st.session_state.current_step = 1
                st.rerun()
            else:
                st.warning("Please fill all fields")

def collect_medical_history():
    st.header("Medical History")
    with st.form("medical_history"):
        st.session_state.patient_info['medical_history'] = st.text_area("Relevant Medical History")
        st.session_state.patient_info['medications'] = st.text_area("Current Medications")
        st.session_state.patient_info['allergies'] = st.text_input("Known Allergies")
        st.session_state.patient_info['last_meal'] = st.text_input("Last Meal Time")
        st.session_state.patient_info['recent_travel'] = st.text_input("Recent Travel History")
        
        if st.form_submit_button("Submit"):
            st.session_state.current_step = 4
            st.rerun()

def generate_risk_assessment():
    st.header("Comprehensive Assessment")
    
    try:
        # Generate clinical summary
        symptom_log = "\n".join([f"Q: {q['question']}\nA: {q['answer']}" for q in st.session_state.symptom_details])
        patient_profile = f"""
Name: {st.session_state.patient_info['name']}
Age: {st.session_state.patient_info['age']}
Gender: {st.session_state.patient_info['gender']}
Main Symptom: {st.session_state.patient_info['main_symptom']}

Symptom Details:
{symptom_log}

Medical History: {st.session_state.patient_info.get('medical_history', 'N/A')}
Medications: {st.session_state.patient_info.get('medications', 'N/A')}
Allergies: {st.session_state.patient_info.get('allergies', 'N/A')}
        """

        # Risk analysis
        analysis_system = MedicalAnalysisSystem("DATASET.csv")
        analysis_results = analysis_system.analyze_patient_data(patient_profile)
        
        # Store the analysis results in session state
        st.session_state.analysis_results = analysis_results
        
        col1, col2 = st.columns(2)
        with col1:
            st.subheader("Clinical Summary")
            st.markdown(f"\n{patient_profile}\n")
            
        with col2:
            st.subheader("Risk Analysis")
            if "error" in analysis_results:
                st.error(analysis_results["error"])
            else:
                st.metric("Risk Level", analysis_results['risk_label'])
                st.progress(analysis_results['risk_percentage'] / 100)
                st.write(f"*Score*: {analysis_results['risk_score']:.1f}/{analysis_system.MAX_RISK_SCORE:.1f}")
                
        # Download report
        report_content = f"CLINICAL SUMMARY:\n{patient_profile}\n\nRISK ANALYSIS:\n{analysis_results}"
        st.download_button("Download Full Report", report_content, "medical_report.txt")

    except Exception as e:
        st.error(f"Assessment Error: {str(e)}")

def schedule_appointment():
    st.header("πŸš‘ Schedule Specialist Appointment")
    
    # Doctor database
    doctors = [
        {
            'name': 'Dr. Sarah Johnson',
            'hospital': 'City General Hospital',
            'specialty': 'Cardiology',
            'slots': ['2024-03-25 09:00', '2024-03-25 10:00', '2024-03-26 11:00'],
            'contact': '555-0101',
            'emergency': True
        },
        {
            'name': 'Dr. Michael Chen',
            'hospital': 'Metropolitan Health',
            'specialty': 'Neurology',
            'slots': ['2024-03-25 14:00', '2024-03-26 09:30', '2024-03-27 15:00'],
            'contact': '555-0102',
            'emergency': True
        },
        {
            'name': 'Dr. Emily White',
            'hospital': 'Sunrise Clinic',
            'specialty': 'General Practice',
            'slots': ['2024-03-24 10:00', '2024-03-25 11:00', '2024-03-26 16:00'],
            'contact': '555-0103',
            'emergency': False
        },
        {
            'name': 'Dr. Raj Patel',
            'hospital': 'Westside Medical Center',
            'specialty': 'Orthopedics',
            'slots': ['2024-03-25 08:00', '2024-03-26 10:00', '2024-03-27 09:00'],
            'contact': '555-0104',
            'emergency': True
        },
        {
            'name': 'Dr. Linda Garcia',
            'hospital': "Children's Hospital",
            'specialty': 'Pediatrics',
            'slots': ['2024-03-25 12:00', '2024-03-26 14:00', '2024-03-27 10:00'],
            'contact': '555-0105',
            'emergency': True
        }
    ]
    
    risk_data = st.session_state.get('analysis_results', {})
    
    # Check if risk_data is None or empty
    if not risk_data or "error" in risk_data:
        st.error("No risk assessment available. Please complete the assessment first.")
        return
    
    risk_label = risk_data.get('risk_label', 'Low')
    
    # Priority explanation
    st.markdown(f"""
    <div class="priority-banner">
        Your current risk level: <strong>{risk_label}</strong> priority
        <br>{(risk_label == 'High') and 'πŸŸ₯ Urgent - Same day appointments available' 
            or (risk_label == 'Medium') and '🟨 Semi-Urgent - Next day appointments' 
            or '🟩 Routine - Book within 3 days'}
    </div>
    """, unsafe_allow_html=True)
    
    # Filter doctors based on risk
    if risk_label == 'High':
        available_doctors = [d for d in doctors if d['emergency']]
    else:
        available_doctors = doctors
    
    # Display doctors in columns
    cols = st.columns(2)
    for idx, doctor in enumerate(available_doctors):
        with cols[idx % 2]:
            with st.container():
                st.subheader(f"πŸ₯ {doctor['hospital']}")
                st.markdown(f"""
                *Doctor*: {doctor['name']}  
                *Specialty*: {doctor['specialty']}  
                *Contact*: {doctor['contact']}
                """)
                
                # Sort slots based on risk
                slots = sorted(doctor['slots'], key=lambda x: datetime.strptime(x, '%Y-%m-%d %H:%M'))
                if risk_label == 'Low':
                    slots = slots[::-1]
                
                selected_slot = st.selectbox(f"Available slots with {doctor['name']}", 
                                           slots, 
                                           key=f"slot_{idx}")
                
                if st.button(f"Book with {doctor['name']}", key=f"book_{idx}"):
                    st.session_state.appointment_details = {
                        'doctor': doctor['name'],
                        'hospital': doctor['hospital'],
                        'time': selected_slot,
                        'contact': doctor['contact'],
                        'risk_level': risk_label
                    }
                    st.success("Appointment booked successfully!")
                    st.balloons()
                    
                    # Generate appointment summary
                    summary = f"""
                    *Patient Name*: {st.session_state.patient_info['name']}
                    *Age*: {st.session_state.patient_info['age']}
                    *Booked Appointment*:
                    - Doctor: {doctor['name']}
                    - Hospital: {doctor['hospital']}
                    - Time: {selected_slot}
                    - Contact: {doctor['contact']}
                    - Priority Level: {risk_label}
                    """
                    st.session_state.appointment_summary = summary
                    
                    # Show download button
                    st.download_button("Download Appointment Details", 
                                      summary, 
                                      "appointment_confirmation.txt",
                                      help="Save your appointment details")
def main():
    st.title("πŸ₯ AI Medical Consultancy")
    
    # Initialize Groq client
    if not initialize_groq_client():
        st.warning("Please provide a valid Groq API key to proceed.")
        return

    # Define steps for the progress bar
    steps = ["Patient Info", "Symptoms", "History", "Report", "Booking"]
    
    # Display progress bar
    progress = f"""
    <div class="progress-bar">
        {"".join(f'<div class="step {"active" if st.session_state.current_step >= i else ""}">{i+1}. {step}</div>'
        for i, step in enumerate(steps))}
    </div>
    """
    st.markdown(progress, unsafe_allow_html=True)

    # Step routing logic
    if st.session_state.current_step == 0:
        collect_basic_info()  # Step 1: Collect patient information
    elif st.session_state.current_step in [1, 2]:
        handle_symptom_interrogation()  # Step 2: Symptom analysis
    elif st.session_state.current_step == 3:
        collect_medical_history()  # Step 3: Collect medical history
    elif st.session_state.current_step == 4:
        generate_risk_assessment()  # Step 4: Generate risk assessment
        if st.button("πŸ“… Schedule Doctor Appointment"):
            st.session_state.current_step = 5  # Move to the booking step
            st.rerun()
    elif st.session_state.current_step == 5:
        schedule_appointment()  # Step 5: Schedule appointment with a doctor

    # Debugging: Show session state (optional)
    if st.sidebar.checkbox("Show Session State (Debug)"):
        st.sidebar.write(st.session_state)

if _name_ == "_main_":
    main()