Update app.py
Browse files
app.py
CHANGED
|
@@ -1,387 +1,387 @@
|
|
| 1 |
-
import cv2
|
| 2 |
-
import os
|
| 3 |
-
import json
|
| 4 |
-
import subprocess
|
| 5 |
-
import numpy as np
|
| 6 |
-
import torch
|
| 7 |
-
import matplotlib.pyplot as plt
|
| 8 |
-
from tqdm import tqdm
|
| 9 |
-
from PIL import Image
|
| 10 |
-
from transformers import (
|
| 11 |
-
AutoImageProcessor,
|
| 12 |
-
AutoModelForObjectDetection
|
| 13 |
-
)
|
| 14 |
-
import os
|
| 15 |
-
import tempfile
|
| 16 |
-
|
| 17 |
-
# -------------------- Configuration -------------------- #
|
| 18 |
-
DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 19 |
-
FRAME_EXTRACTION_INTERVAL = 0.01 # Seconds between frame captures
|
| 20 |
-
|
| 21 |
-
# -------------------- Model Loading -------------------- #
|
| 22 |
-
try:
|
| 23 |
-
print("π Loading visual model and processor...")
|
| 24 |
-
processor_visual = AutoImageProcessor.from_pretrained("facebook/detr-resnet-50")
|
| 25 |
-
model_visual = AutoModelForObjectDetection.from_pretrained("facebook/detr-resnet-50").to(DEVICE)
|
| 26 |
-
print(f"β
Model loaded on {DEVICE} successfully!")
|
| 27 |
-
except Exception as e:
|
| 28 |
-
print(f"β Error loading model: {e}")
|
| 29 |
-
exit()
|
| 30 |
-
|
| 31 |
-
# -------------------- Metadata Extraction -------------------- #
|
| 32 |
-
def extract_metadata(video_path):
|
| 33 |
-
"""Extracts video metadata using FFmpeg"""
|
| 34 |
-
try:
|
| 35 |
-
cmd = ["ffprobe", "-v", "quiet", "-print_format", "json",
|
| 36 |
-
"-show_format", "-show_streams", video_path]
|
| 37 |
-
result = subprocess.run(cmd, capture_output=True, text=True)
|
| 38 |
-
return json.loads(result.stdout)
|
| 39 |
-
except Exception as e:
|
| 40 |
-
print(f"β Metadata extraction failed: {e}")
|
| 41 |
-
return {}
|
| 42 |
-
|
| 43 |
-
# -------------------- Frame Extraction -------------------- #
|
| 44 |
-
def extract_frames(video_path, output_folder="frames"):
|
| 45 |
-
"""Extracts frames from video at specified interval (supports sub-second intervals)"""
|
| 46 |
-
os.makedirs(output_folder, exist_ok=True)
|
| 47 |
-
|
| 48 |
-
cap = cv2.VideoCapture(video_path)
|
| 49 |
-
if not cap.isOpened():
|
| 50 |
-
print("β Could not open video file")
|
| 51 |
-
return 0
|
| 52 |
-
|
| 53 |
-
fps = cap.get(cv2.CAP_PROP_FPS)
|
| 54 |
-
total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT)) # Total frames in the video
|
| 55 |
-
total_duration = total_frames / fps # Total duration in seconds
|
| 56 |
-
frame_count = 0
|
| 57 |
-
|
| 58 |
-
# Use a while loop for sub-second intervals
|
| 59 |
-
timestamp = 0.0
|
| 60 |
-
while timestamp <= total_duration:
|
| 61 |
-
cap.set(cv2.CAP_PROP_POS_MSEC, timestamp * 1000) # Convert seconds to milliseconds
|
| 62 |
-
ret, frame = cap.read()
|
| 63 |
-
if ret:
|
| 64 |
-
cv2.imwrite(f"{output_folder}/frame_{frame_count:04d}.jpg", frame)
|
| 65 |
-
frame_count += 1
|
| 66 |
-
else:
|
| 67 |
-
break # Stop if we can't read any more frames
|
| 68 |
-
|
| 69 |
-
timestamp += FRAME_EXTRACTION_INTERVAL # Increment by the interval
|
| 70 |
-
|
| 71 |
-
cap.release()
|
| 72 |
-
return frame_count
|
| 73 |
-
# -------------------- Optical Flow Calculation -------------------- #
|
| 74 |
-
def calculate_optical_flow(frames_folder):
|
| 75 |
-
"""Calculates dense optical flow between consecutive frames with validation"""
|
| 76 |
-
frame_files = sorted([f for f in os.listdir(frames_folder) if f.endswith(".jpg")])
|
| 77 |
-
flow_results = []
|
| 78 |
-
|
| 79 |
-
# Get reference dimensions from first valid frame
|
| 80 |
-
ref_height, ref_width = None, None
|
| 81 |
-
for f in frame_files:
|
| 82 |
-
frame = cv2.imread(os.path.join(frames_folder, f))
|
| 83 |
-
if frame is not None:
|
| 84 |
-
ref_height, ref_width = frame.shape[:2]
|
| 85 |
-
break
|
| 86 |
-
|
| 87 |
-
if ref_height is None:
|
| 88 |
-
print("β No valid frames found for optical flow calculation")
|
| 89 |
-
return []
|
| 90 |
-
|
| 91 |
-
prev_gray = None
|
| 92 |
-
for i in tqdm(range(len(frame_files)), desc="Calculating optical flow"):
|
| 93 |
-
current_path = os.path.join(frames_folder, frame_files[i])
|
| 94 |
-
current_frame = cv2.imread(current_path)
|
| 95 |
-
|
| 96 |
-
if current_frame is None:
|
| 97 |
-
continue
|
| 98 |
-
|
| 99 |
-
# Ensure consistent dimensions
|
| 100 |
-
if current_frame.shape[:2] != (ref_height, ref_width):
|
| 101 |
-
current_frame = cv2.resize(current_frame, (ref_width, ref_height))
|
| 102 |
-
|
| 103 |
-
# Ensure 3-channel color format
|
| 104 |
-
if len(current_frame.shape) == 2:
|
| 105 |
-
current_frame = cv2.cvtColor(current_frame, cv2.COLOR_GRAY2BGR)
|
| 106 |
-
|
| 107 |
-
current_gray = cv2.cvtColor(current_frame, cv2.COLOR_BGR2GRAY)
|
| 108 |
-
|
| 109 |
-
if prev_gray is not None:
|
| 110 |
-
flow = cv2.calcOpticalFlowFarneback(
|
| 111 |
-
prev_gray, current_gray, None,
|
| 112 |
-
pyr_scale=0.5, levels=3, iterations=3,
|
| 113 |
-
winsize=15, poly_n=5, poly_sigma=1.2, flags=0
|
| 114 |
-
)
|
| 115 |
-
|
| 116 |
-
flow_magnitude = np.sqrt(flow[...,0]*2 + flow[...,1]*2)
|
| 117 |
-
flow_results.append({
|
| 118 |
-
"max_flow": float(flow_magnitude.max()),
|
| 119 |
-
"mean_flow": float(flow_magnitude.mean())
|
| 120 |
-
})
|
| 121 |
-
|
| 122 |
-
prev_gray = current_gray
|
| 123 |
-
|
| 124 |
-
# Apply temporal smoothing
|
| 125 |
-
window_size = 5
|
| 126 |
-
smoothed_flow = []
|
| 127 |
-
for i in range(len(flow_results)):
|
| 128 |
-
start = max(0, i - window_size // 2)
|
| 129 |
-
end = min(len(flow_results), i + window_size // 2 + 1)
|
| 130 |
-
window = flow_results[start:end]
|
| 131 |
-
avg_mean = np.mean([f['mean_flow'] for f in window])
|
| 132 |
-
avg_max = np.mean([f['max_flow'] for f in window])
|
| 133 |
-
smoothed_flow.append({'mean_flow': avg_mean, 'max_flow': avg_max})
|
| 134 |
-
|
| 135 |
-
return smoothed_flow
|
| 136 |
-
|
| 137 |
-
# -------------------- Visual Analysis -------------------- #
|
| 138 |
-
def detect_objects(frames_folder):
|
| 139 |
-
"""Processes frames through the visual detection model"""
|
| 140 |
-
results = []
|
| 141 |
-
frame_files = sorted([f for f in os.listdir(frames_folder) if f.endswith(".jpg")])
|
| 142 |
-
|
| 143 |
-
for frame_file in tqdm(frame_files, desc="Analyzing frames"):
|
| 144 |
-
try:
|
| 145 |
-
image = Image.open(os.path.join(frames_folder, frame_file))
|
| 146 |
-
inputs = processor_visual(images=image, return_tensors="pt").to(DEVICE)
|
| 147 |
-
|
| 148 |
-
with torch.no_grad():
|
| 149 |
-
outputs = model_visual(**inputs)
|
| 150 |
-
|
| 151 |
-
# Process detections with lower threshold
|
| 152 |
-
target_sizes = torch.tensor([image.size[::-1]]).to(DEVICE)
|
| 153 |
-
detections = processor_visual.post_process_object_detection(
|
| 154 |
-
outputs, target_sizes=target_sizes, threshold=0.4 # Lowered from 0.7
|
| 155 |
-
)[0]
|
| 156 |
-
|
| 157 |
-
scores = detections["scores"].cpu().numpy().tolist()
|
| 158 |
-
max_confidence = max(scores) if scores else 0.0
|
| 159 |
-
|
| 160 |
-
results.append({
|
| 161 |
-
"frame": frame_file,
|
| 162 |
-
"detections": len(scores),
|
| 163 |
-
"max_confidence": max_confidence,
|
| 164 |
-
"average_confidence": np.mean(scores) if scores else 0.0
|
| 165 |
-
})
|
| 166 |
-
|
| 167 |
-
except Exception as e:
|
| 168 |
-
print(f"β Error processing {frame_file}: {e}")
|
| 169 |
-
results.append({
|
| 170 |
-
"frame": frame_file,
|
| 171 |
-
"detections": 0,
|
| 172 |
-
"max_confidence": 0.0,
|
| 173 |
-
"average_confidence": 0.0
|
| 174 |
-
})
|
| 175 |
-
|
| 176 |
-
return results
|
| 177 |
-
|
| 178 |
-
# -------------------- Manipulation Detection -------------------- #
|
| 179 |
-
def detect_manipulation(report_path="report.json"):
|
| 180 |
-
"""Determines video authenticity based on analysis results"""
|
| 181 |
-
try:
|
| 182 |
-
with open(report_path) as f:
|
| 183 |
-
report = json.load(f)
|
| 184 |
-
|
| 185 |
-
# Adjusted thresholds
|
| 186 |
-
CONFIDENCE_THRESHOLD = 0.80 # Reduced from 0.65
|
| 187 |
-
FLOW_STD_THRESHOLD = 28 # New standard deviation threshold
|
| 188 |
-
SUSPICIOUS_FRAME_RATIO = 0.3 # Increased from 0.25
|
| 189 |
-
|
| 190 |
-
stats = report["summary_stats"]
|
| 191 |
-
|
| 192 |
-
# New metrics
|
| 193 |
-
confidence_std = np.std([r["average_confidence"] for r in report["frame_analysis"]])
|
| 194 |
-
flow_std = stats.get("std_optical_flow", 0)
|
| 195 |
-
low_conf_frames = sum(1 for r in report["frame_analysis"] if r["average_confidence"] < 0.4)
|
| 196 |
-
anomaly_ratio = low_conf_frames / len(report["frame_analysis"])
|
| 197 |
-
|
| 198 |
-
# Multi-factor scoring
|
| 199 |
-
score = 0
|
| 200 |
-
if stats["average_detection_confidence"] < CONFIDENCE_THRESHOLD:
|
| 201 |
-
score += 1.5
|
| 202 |
-
if flow_std > FLOW_STD_THRESHOLD:
|
| 203 |
-
score += 1.2
|
| 204 |
-
if anomaly_ratio > SUSPICIOUS_FRAME_RATIO:
|
| 205 |
-
score += 1.0
|
| 206 |
-
if confidence_std > 0.2: # High variance in confidence
|
| 207 |
-
score += 0.8
|
| 208 |
-
|
| 209 |
-
return score
|
| 210 |
-
|
| 211 |
-
except Exception as e:
|
| 212 |
-
return f"β Error in analysis: {str(e)}"
|
| 213 |
-
|
| 214 |
-
# -------------------- Reporting -------------------- #
|
| 215 |
-
# -------------------- Reporting -------------------- #
|
| 216 |
-
def generate_report(visual_results, flow_results, output_file="report.json"):
|
| 217 |
-
"""Generates comprehensive analysis report"""
|
| 218 |
-
report_data = {
|
| 219 |
-
"frame_analysis": visual_results,
|
| 220 |
-
"motion_analysis": flow_results,
|
| 221 |
-
"summary_stats": {
|
| 222 |
-
"max_detection_confidence": max(r["max_confidence"] for r in visual_results),
|
| 223 |
-
"average_detection_confidence": np.mean([r["average_confidence"] for r in visual_results]),
|
| 224 |
-
"detection_confidence_std": np.std([r["average_confidence"] for r in visual_results]),
|
| 225 |
-
"peak_optical_flow": max(r["max_flow"] for r in flow_results) if flow_results else 0,
|
| 226 |
-
"average_optical_flow": np.mean([r["mean_flow"] for r in flow_results]) if flow_results else 0,
|
| 227 |
-
"std_optical_flow": np.std([r["mean_flow"] for r in flow_results]) if flow_results else 0
|
| 228 |
-
}
|
| 229 |
-
}
|
| 230 |
-
|
| 231 |
-
with open(output_file, "w") as f:
|
| 232 |
-
json.dump(report_data, f, indent=2)
|
| 233 |
-
|
| 234 |
-
# ... rest of visualization code ...
|
| 235 |
-
|
| 236 |
-
return report_data # Added return statement
|
| 237 |
-
|
| 238 |
-
# -------------------- Main Pipeline -------------------- #
|
| 239 |
-
def analyze_video(video_path):
|
| 240 |
-
"""Complete video analysis workflow"""
|
| 241 |
-
print("\nπ Metadata Extraction:")
|
| 242 |
-
metadata = extract_metadata(video_path)
|
| 243 |
-
print(json.dumps(metadata.get("streams", [{}])[0], indent=2))
|
| 244 |
-
|
| 245 |
-
print("\nπ Frame Extraction:")
|
| 246 |
-
frame_count = extract_frames(video_path)
|
| 247 |
-
print(f"β
Extracted {frame_count} frames at {FRAME_EXTRACTION_INTERVAL}s intervals")
|
| 248 |
-
|
| 249 |
-
print("\nπ Running object detection...")
|
| 250 |
-
visual_results = detect_objects("frames")
|
| 251 |
-
|
| 252 |
-
print("\nπ Calculating optical flow...")
|
| 253 |
-
flow_results = calculate_optical_flow("frames")
|
| 254 |
-
|
| 255 |
-
print("\nπ Generating Final Report...")
|
| 256 |
-
report_data = generate_report(visual_results, flow_results)
|
| 257 |
-
|
| 258 |
-
print("\nπ Authenticity Analysis:")
|
| 259 |
-
score = detect_manipulation() # This function should return a score
|
| 260 |
-
|
| 261 |
-
print(f"\nπ― Final Score: {score}") # Debugging line
|
| 262 |
-
return score # β
Ensure this score is returned properly
|
| 263 |
-
|
| 264 |
-
|
| 265 |
-
|
| 266 |
-
# -------------------- Execution -------------------- #
|
| 267 |
-
|
| 268 |
-
|
| 269 |
-
|
| 270 |
-
#--------------------------------Streamlit---------------------------------------------#
|
| 271 |
-
#--------------------------------Streamlit---------------------------------------------#
|
| 272 |
-
import streamlit as st
|
| 273 |
-
import tempfile
|
| 274 |
-
def local_css(file_name):
|
| 275 |
-
with open(file_name) as f:
|
| 276 |
-
st.markdown(f"<style>{f.read()}</style>", unsafe_allow_html=True)
|
| 277 |
-
local_css("style.css") # Ensure you have a separate style.css file
|
| 278 |
-
|
| 279 |
-
# Sidebar for Navigation
|
| 280 |
-
# Navigation
|
| 281 |
-
st.sidebar.title("Navigation")
|
| 282 |
-
page = st.sidebar.radio("", ["Home", "Analyze Video", "About"])
|
| 283 |
-
|
| 284 |
-
# Home Page
|
| 285 |
-
if page == "Home":
|
| 286 |
-
st.markdown("<h1 class='title'>Video Manipulation Detection</h1>", unsafe_allow_html=True)
|
| 287 |
-
|
| 288 |
-
# Hero Section
|
| 289 |
-
col1, col2 = st.columns(2)
|
| 290 |
-
with col1:
|
| 291 |
-
st.markdown("""
|
| 292 |
-
<div class='hero-text'>
|
| 293 |
-
Detect manipulated videos with AI-powered analysis.
|
| 294 |
-
Protect yourself from deepfakes and synthetic media.
|
| 295 |
-
</div>
|
| 296 |
-
""", unsafe_allow_html=True)
|
| 297 |
-
|
| 298 |
-
with col2:
|
| 299 |
-
st.video("Realistic Universe Intro_free.mp4") # Add sample video URL
|
| 300 |
-
|
| 301 |
-
# Features Section
|
| 302 |
-
st.markdown("## How It Works")
|
| 303 |
-
cols = st.columns(3)
|
| 304 |
-
with cols[0]:
|
| 305 |
-
st.image("upload-icon.png", width=100)
|
| 306 |
-
st.markdown("### Upload Video")
|
| 307 |
-
with cols[1]:
|
| 308 |
-
st.image("analyze-icon.png", width=100)
|
| 309 |
-
st.markdown("### AI Analysis")
|
| 310 |
-
with cols[2]:
|
| 311 |
-
st.image("result-icon.png", width=100)
|
| 312 |
-
st.markdown("### Get Results")
|
| 313 |
-
|
| 314 |
-
|
| 315 |
-
elif page == "Analyze Video":
|
| 316 |
-
uploaded_file = st.file_uploader("Upload a Video", type=["mp4", "mov"])
|
| 317 |
-
|
| 318 |
-
if uploaded_file is not None:
|
| 319 |
-
# Save uploaded file to a temporary location
|
| 320 |
-
with tempfile.NamedTemporaryFile(delete=False, suffix=".mp4") as temp_file:
|
| 321 |
-
temp_file.write(uploaded_file.read())
|
| 322 |
-
temp_video_path = temp_file.name # β
Correct variable name
|
| 323 |
-
|
| 324 |
-
st.video(temp_video_path)
|
| 325 |
-
|
| 326 |
-
if st.button("Analyze Video"):
|
| 327 |
-
with st.spinner("Analyzing..."):
|
| 328 |
-
try:
|
| 329 |
-
score = analyze_video(temp_video_path) # β
Ensure function exists
|
| 330 |
-
|
| 331 |
-
# Debugging Line
|
| 332 |
-
st.write(f"Analysis Score: {score}")
|
| 333 |
-
float(score)
|
| 334 |
-
# Display result based on score
|
| 335 |
-
if score >= 3.5 :
|
| 336 |
-
st.markdown(f"""
|
| 337 |
-
<div class='result-box suspicious'>
|
| 338 |
-
<p>This video shows major signs of manipulation</p>
|
| 339 |
-
</div>
|
| 340 |
-
""", unsafe_allow_html=True)
|
| 341 |
-
elif score >= 2.0:
|
| 342 |
-
st.markdown(f"""
|
| 343 |
-
<div class='result-box suspicious'>
|
| 344 |
-
<p>This video shows minor signs of manipulation</p>
|
| 345 |
-
</div>
|
| 346 |
-
""", unsafe_allow_html=True)
|
| 347 |
-
else:
|
| 348 |
-
st.markdown(f"""
|
| 349 |
-
<div class='result-box clean'>
|
| 350 |
-
<p>No significant manipulation detected</p>
|
| 351 |
-
</div>
|
| 352 |
-
""", unsafe_allow_html=True)
|
| 353 |
-
except Exception as e:
|
| 354 |
-
st.error(f"An error occurred during analysis: {e}")
|
| 355 |
-
|
| 356 |
-
elif page == "About": # β
Now this will work correctly
|
| 357 |
-
st.markdown("<h1 class='title'>About Us</h1>", unsafe_allow_html=True)
|
| 358 |
-
|
| 359 |
-
# Creator Profile
|
| 360 |
-
col1, col2 = st.columns(2)
|
| 361 |
-
with col1:
|
| 362 |
-
st.image("creator.jpg", width=300, caption="Ayush Agarwal, Lead Developer")
|
| 363 |
-
with col2:
|
| 364 |
-
st.markdown("""
|
| 365 |
-
<div class='about-text'>
|
| 366 |
-
## Ayush Agarwal ,
|
| 367 |
-
Student at VIT Bhopal University ,
|
| 368 |
-
AIML enthusiast
|
| 369 |
-
<br><br>
|
| 370 |
-
π§ [email protected]
|
| 371 |
-
<br>
|
| 372 |
-
π [LinkedIn](www.linkedin.com/in/ayush20039939)
|
| 373 |
-
<br>
|
| 374 |
-
π [GitHub](https://github.com)
|
| 375 |
-
</div>
|
| 376 |
-
""", unsafe_allow_html=True)
|
| 377 |
-
|
| 378 |
-
# Technology Stack
|
| 379 |
-
st.markdown("## Our Technology")
|
| 380 |
-
st.markdown("""
|
| 381 |
-
<div class='tech-stack'>
|
| 382 |
-
<img src='https://img.icons8.com/color/96/000000/python.png'/>
|
| 383 |
-
<img src='https://img.icons8.com/color/96/000000/tensorflow.png'/>
|
| 384 |
-
<img src='https://img.icons8.com/color/96/000000/opencv.png'/>
|
| 385 |
-
<img src='https://raw.githubusercontent.com/github/explore/968d1eb8fb6b704c6be917f0000283face4f33ee/topics/streamlit/streamlit.png'/>
|
| 386 |
-
</div>
|
| 387 |
""", unsafe_allow_html=True)
|
|
|
|
| 1 |
+
import cv2
|
| 2 |
+
import os
|
| 3 |
+
import json
|
| 4 |
+
import subprocess
|
| 5 |
+
import numpy as np
|
| 6 |
+
import torch
|
| 7 |
+
import matplotlib.pyplot as plt
|
| 8 |
+
from tqdm import tqdm
|
| 9 |
+
from PIL import Image
|
| 10 |
+
from transformers import (
|
| 11 |
+
AutoImageProcessor,
|
| 12 |
+
AutoModelForObjectDetection
|
| 13 |
+
)
|
| 14 |
+
import os
|
| 15 |
+
import tempfile
|
| 16 |
+
|
| 17 |
+
# -------------------- Configuration -------------------- #
|
| 18 |
+
DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 19 |
+
FRAME_EXTRACTION_INTERVAL = 0.01 # Seconds between frame captures
|
| 20 |
+
|
| 21 |
+
# -------------------- Model Loading -------------------- #
|
| 22 |
+
try:
|
| 23 |
+
print("π Loading visual model and processor...")
|
| 24 |
+
processor_visual = AutoImageProcessor.from_pretrained("facebook/detr-resnet-50")
|
| 25 |
+
model_visual = AutoModelForObjectDetection.from_pretrained("facebook/detr-resnet-50").to(DEVICE)
|
| 26 |
+
print(f"β
Model loaded on {DEVICE} successfully!")
|
| 27 |
+
except Exception as e:
|
| 28 |
+
print(f"β Error loading model: {e}")
|
| 29 |
+
exit()
|
| 30 |
+
|
| 31 |
+
# -------------------- Metadata Extraction -------------------- #
|
| 32 |
+
def extract_metadata(video_path):
|
| 33 |
+
"""Extracts video metadata using FFmpeg"""
|
| 34 |
+
try:
|
| 35 |
+
cmd = ["ffprobe", "-v", "quiet", "-print_format", "json",
|
| 36 |
+
"-show_format", "-show_streams", video_path]
|
| 37 |
+
result = subprocess.run(cmd, capture_output=True, text=True)
|
| 38 |
+
return json.loads(result.stdout)
|
| 39 |
+
except Exception as e:
|
| 40 |
+
print(f"β Metadata extraction failed: {e}")
|
| 41 |
+
return {}
|
| 42 |
+
|
| 43 |
+
# -------------------- Frame Extraction -------------------- #
|
| 44 |
+
def extract_frames(video_path, output_folder="frames"):
|
| 45 |
+
"""Extracts frames from video at specified interval (supports sub-second intervals)"""
|
| 46 |
+
os.makedirs(output_folder, exist_ok=True)
|
| 47 |
+
|
| 48 |
+
cap = cv2.VideoCapture(video_path)
|
| 49 |
+
if not cap.isOpened():
|
| 50 |
+
print("β Could not open video file")
|
| 51 |
+
return 0
|
| 52 |
+
|
| 53 |
+
fps = cap.get(cv2.CAP_PROP_FPS)
|
| 54 |
+
total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT)) # Total frames in the video
|
| 55 |
+
total_duration = total_frames / fps # Total duration in seconds
|
| 56 |
+
frame_count = 0
|
| 57 |
+
|
| 58 |
+
# Use a while loop for sub-second intervals
|
| 59 |
+
timestamp = 0.0
|
| 60 |
+
while timestamp <= total_duration:
|
| 61 |
+
cap.set(cv2.CAP_PROP_POS_MSEC, timestamp * 1000) # Convert seconds to milliseconds
|
| 62 |
+
ret, frame = cap.read()
|
| 63 |
+
if ret:
|
| 64 |
+
cv2.imwrite(f"{output_folder}/frame_{frame_count:04d}.jpg", frame)
|
| 65 |
+
frame_count += 1
|
| 66 |
+
else:
|
| 67 |
+
break # Stop if we can't read any more frames
|
| 68 |
+
|
| 69 |
+
timestamp += FRAME_EXTRACTION_INTERVAL # Increment by the interval
|
| 70 |
+
|
| 71 |
+
cap.release()
|
| 72 |
+
return frame_count
|
| 73 |
+
# -------------------- Optical Flow Calculation -------------------- #
|
| 74 |
+
def calculate_optical_flow(frames_folder):
|
| 75 |
+
"""Calculates dense optical flow between consecutive frames with validation"""
|
| 76 |
+
frame_files = sorted([f for f in os.listdir(frames_folder) if f.endswith(".jpg")])
|
| 77 |
+
flow_results = []
|
| 78 |
+
|
| 79 |
+
# Get reference dimensions from first valid frame
|
| 80 |
+
ref_height, ref_width = None, None
|
| 81 |
+
for f in frame_files:
|
| 82 |
+
frame = cv2.imread(os.path.join(frames_folder, f))
|
| 83 |
+
if frame is not None:
|
| 84 |
+
ref_height, ref_width = frame.shape[:2]
|
| 85 |
+
break
|
| 86 |
+
|
| 87 |
+
if ref_height is None:
|
| 88 |
+
print("β No valid frames found for optical flow calculation")
|
| 89 |
+
return []
|
| 90 |
+
|
| 91 |
+
prev_gray = None
|
| 92 |
+
for i in tqdm(range(len(frame_files)), desc="Calculating optical flow"):
|
| 93 |
+
current_path = os.path.join(frames_folder, frame_files[i])
|
| 94 |
+
current_frame = cv2.imread(current_path)
|
| 95 |
+
|
| 96 |
+
if current_frame is None:
|
| 97 |
+
continue
|
| 98 |
+
|
| 99 |
+
# Ensure consistent dimensions
|
| 100 |
+
if current_frame.shape[:2] != (ref_height, ref_width):
|
| 101 |
+
current_frame = cv2.resize(current_frame, (ref_width, ref_height))
|
| 102 |
+
|
| 103 |
+
# Ensure 3-channel color format
|
| 104 |
+
if len(current_frame.shape) == 2:
|
| 105 |
+
current_frame = cv2.cvtColor(current_frame, cv2.COLOR_GRAY2BGR)
|
| 106 |
+
|
| 107 |
+
current_gray = cv2.cvtColor(current_frame, cv2.COLOR_BGR2GRAY)
|
| 108 |
+
|
| 109 |
+
if prev_gray is not None:
|
| 110 |
+
flow = cv2.calcOpticalFlowFarneback(
|
| 111 |
+
prev_gray, current_gray, None,
|
| 112 |
+
pyr_scale=0.5, levels=3, iterations=3,
|
| 113 |
+
winsize=15, poly_n=5, poly_sigma=1.2, flags=0
|
| 114 |
+
)
|
| 115 |
+
|
| 116 |
+
flow_magnitude = np.sqrt(flow[...,0]*2 + flow[...,1]*2)
|
| 117 |
+
flow_results.append({
|
| 118 |
+
"max_flow": float(flow_magnitude.max()),
|
| 119 |
+
"mean_flow": float(flow_magnitude.mean())
|
| 120 |
+
})
|
| 121 |
+
|
| 122 |
+
prev_gray = current_gray
|
| 123 |
+
|
| 124 |
+
# Apply temporal smoothing
|
| 125 |
+
window_size = 5
|
| 126 |
+
smoothed_flow = []
|
| 127 |
+
for i in range(len(flow_results)):
|
| 128 |
+
start = max(0, i - window_size // 2)
|
| 129 |
+
end = min(len(flow_results), i + window_size // 2 + 1)
|
| 130 |
+
window = flow_results[start:end]
|
| 131 |
+
avg_mean = np.mean([f['mean_flow'] for f in window])
|
| 132 |
+
avg_max = np.mean([f['max_flow'] for f in window])
|
| 133 |
+
smoothed_flow.append({'mean_flow': avg_mean, 'max_flow': avg_max})
|
| 134 |
+
|
| 135 |
+
return smoothed_flow
|
| 136 |
+
|
| 137 |
+
# -------------------- Visual Analysis -------------------- #
|
| 138 |
+
def detect_objects(frames_folder):
|
| 139 |
+
"""Processes frames through the visual detection model"""
|
| 140 |
+
results = []
|
| 141 |
+
frame_files = sorted([f for f in os.listdir(frames_folder) if f.endswith(".jpg")])
|
| 142 |
+
|
| 143 |
+
for frame_file in tqdm(frame_files, desc="Analyzing frames"):
|
| 144 |
+
try:
|
| 145 |
+
image = Image.open(os.path.join(frames_folder, frame_file))
|
| 146 |
+
inputs = processor_visual(images=image, return_tensors="pt").to(DEVICE)
|
| 147 |
+
|
| 148 |
+
with torch.no_grad():
|
| 149 |
+
outputs = model_visual(**inputs)
|
| 150 |
+
|
| 151 |
+
# Process detections with lower threshold
|
| 152 |
+
target_sizes = torch.tensor([image.size[::-1]]).to(DEVICE)
|
| 153 |
+
detections = processor_visual.post_process_object_detection(
|
| 154 |
+
outputs, target_sizes=target_sizes, threshold=0.4 # Lowered from 0.7
|
| 155 |
+
)[0]
|
| 156 |
+
|
| 157 |
+
scores = detections["scores"].cpu().numpy().tolist()
|
| 158 |
+
max_confidence = max(scores) if scores else 0.0
|
| 159 |
+
|
| 160 |
+
results.append({
|
| 161 |
+
"frame": frame_file,
|
| 162 |
+
"detections": len(scores),
|
| 163 |
+
"max_confidence": max_confidence,
|
| 164 |
+
"average_confidence": np.mean(scores) if scores else 0.0
|
| 165 |
+
})
|
| 166 |
+
|
| 167 |
+
except Exception as e:
|
| 168 |
+
print(f"β Error processing {frame_file}: {e}")
|
| 169 |
+
results.append({
|
| 170 |
+
"frame": frame_file,
|
| 171 |
+
"detections": 0,
|
| 172 |
+
"max_confidence": 0.0,
|
| 173 |
+
"average_confidence": 0.0
|
| 174 |
+
})
|
| 175 |
+
|
| 176 |
+
return results
|
| 177 |
+
|
| 178 |
+
# -------------------- Manipulation Detection -------------------- #
|
| 179 |
+
def detect_manipulation(report_path="report.json"):
|
| 180 |
+
"""Determines video authenticity based on analysis results"""
|
| 181 |
+
try:
|
| 182 |
+
with open(report_path) as f:
|
| 183 |
+
report = json.load(f)
|
| 184 |
+
|
| 185 |
+
# Adjusted thresholds
|
| 186 |
+
CONFIDENCE_THRESHOLD = 0.80 # Reduced from 0.65
|
| 187 |
+
FLOW_STD_THRESHOLD = 28 # New standard deviation threshold
|
| 188 |
+
SUSPICIOUS_FRAME_RATIO = 0.3 # Increased from 0.25
|
| 189 |
+
|
| 190 |
+
stats = report["summary_stats"]
|
| 191 |
+
|
| 192 |
+
# New metrics
|
| 193 |
+
confidence_std = np.std([r["average_confidence"] for r in report["frame_analysis"]])
|
| 194 |
+
flow_std = stats.get("std_optical_flow", 0)
|
| 195 |
+
low_conf_frames = sum(1 for r in report["frame_analysis"] if r["average_confidence"] < 0.4)
|
| 196 |
+
anomaly_ratio = low_conf_frames / len(report["frame_analysis"])
|
| 197 |
+
|
| 198 |
+
# Multi-factor scoring
|
| 199 |
+
score = 0
|
| 200 |
+
if stats["average_detection_confidence"] < CONFIDENCE_THRESHOLD:
|
| 201 |
+
score += 1.5
|
| 202 |
+
if flow_std > FLOW_STD_THRESHOLD:
|
| 203 |
+
score += 1.2
|
| 204 |
+
if anomaly_ratio > SUSPICIOUS_FRAME_RATIO:
|
| 205 |
+
score += 1.0
|
| 206 |
+
if confidence_std > 0.2: # High variance in confidence
|
| 207 |
+
score += 0.8
|
| 208 |
+
|
| 209 |
+
return score
|
| 210 |
+
|
| 211 |
+
except Exception as e:
|
| 212 |
+
return f"β Error in analysis: {str(e)}"
|
| 213 |
+
|
| 214 |
+
# -------------------- Reporting -------------------- #
|
| 215 |
+
# -------------------- Reporting -------------------- #
|
| 216 |
+
def generate_report(visual_results, flow_results, output_file="report.json"):
|
| 217 |
+
"""Generates comprehensive analysis report"""
|
| 218 |
+
report_data = {
|
| 219 |
+
"frame_analysis": visual_results,
|
| 220 |
+
"motion_analysis": flow_results,
|
| 221 |
+
"summary_stats": {
|
| 222 |
+
"max_detection_confidence": max(r["max_confidence"] for r in visual_results),
|
| 223 |
+
"average_detection_confidence": np.mean([r["average_confidence"] for r in visual_results]),
|
| 224 |
+
"detection_confidence_std": np.std([r["average_confidence"] for r in visual_results]),
|
| 225 |
+
"peak_optical_flow": max(r["max_flow"] for r in flow_results) if flow_results else 0,
|
| 226 |
+
"average_optical_flow": np.mean([r["mean_flow"] for r in flow_results]) if flow_results else 0,
|
| 227 |
+
"std_optical_flow": np.std([r["mean_flow"] for r in flow_results]) if flow_results else 0
|
| 228 |
+
}
|
| 229 |
+
}
|
| 230 |
+
|
| 231 |
+
with open(output_file, "w") as f:
|
| 232 |
+
json.dump(report_data, f, indent=2)
|
| 233 |
+
|
| 234 |
+
# ... rest of visualization code ...
|
| 235 |
+
|
| 236 |
+
return report_data # Added return statement
|
| 237 |
+
|
| 238 |
+
# -------------------- Main Pipeline -------------------- #
|
| 239 |
+
def analyze_video(video_path):
|
| 240 |
+
"""Complete video analysis workflow"""
|
| 241 |
+
print("\nπ Metadata Extraction:")
|
| 242 |
+
metadata = extract_metadata(video_path)
|
| 243 |
+
print(json.dumps(metadata.get("streams", [{}])[0], indent=2))
|
| 244 |
+
|
| 245 |
+
print("\nπ Frame Extraction:")
|
| 246 |
+
frame_count = extract_frames(video_path)
|
| 247 |
+
print(f"β
Extracted {frame_count} frames at {FRAME_EXTRACTION_INTERVAL}s intervals")
|
| 248 |
+
|
| 249 |
+
print("\nπ Running object detection...")
|
| 250 |
+
visual_results = detect_objects("frames")
|
| 251 |
+
|
| 252 |
+
print("\nπ Calculating optical flow...")
|
| 253 |
+
flow_results = calculate_optical_flow("frames")
|
| 254 |
+
|
| 255 |
+
print("\nπ Generating Final Report...")
|
| 256 |
+
report_data = generate_report(visual_results, flow_results)
|
| 257 |
+
|
| 258 |
+
print("\nπ Authenticity Analysis:")
|
| 259 |
+
score = detect_manipulation() # This function should return a score
|
| 260 |
+
|
| 261 |
+
print(f"\nπ― Final Score: {score}") # Debugging line
|
| 262 |
+
return score # β
Ensure this score is returned properly
|
| 263 |
+
|
| 264 |
+
|
| 265 |
+
|
| 266 |
+
# -------------------- Execution -------------------- #
|
| 267 |
+
|
| 268 |
+
|
| 269 |
+
|
| 270 |
+
#--------------------------------Streamlit---------------------------------------------#
|
| 271 |
+
#--------------------------------Streamlit---------------------------------------------#
|
| 272 |
+
import streamlit as st
|
| 273 |
+
import tempfile
|
| 274 |
+
def local_css(file_name):
|
| 275 |
+
with open(file_name) as f:
|
| 276 |
+
st.markdown(f"<style>{f.read()}</style>", unsafe_allow_html=True)
|
| 277 |
+
local_css("style.css") # Ensure you have a separate style.css file
|
| 278 |
+
|
| 279 |
+
# Sidebar for Navigation
|
| 280 |
+
# Navigation
|
| 281 |
+
st.sidebar.title("Navigation")
|
| 282 |
+
page = st.sidebar.radio("", ["Home", "Analyze Video", "About"])
|
| 283 |
+
|
| 284 |
+
# Home Page
|
| 285 |
+
if page == "Home":
|
| 286 |
+
st.markdown("<h1 class='title'>Video Manipulation Detection</h1>", unsafe_allow_html=True)
|
| 287 |
+
|
| 288 |
+
# Hero Section
|
| 289 |
+
col1, col2 = st.columns(2)
|
| 290 |
+
with col1:
|
| 291 |
+
st.markdown("""
|
| 292 |
+
<div class='hero-text'>
|
| 293 |
+
Detect manipulated videos with AI-powered analysis.
|
| 294 |
+
Protect yourself from deepfakes and synthetic media.
|
| 295 |
+
</div>
|
| 296 |
+
""", unsafe_allow_html=True)
|
| 297 |
+
|
| 298 |
+
with col2:
|
| 299 |
+
st.video("Realistic Universe Intro_free.mp4") # Add sample video URL
|
| 300 |
+
|
| 301 |
+
# Features Section
|
| 302 |
+
st.markdown("## How It Works")
|
| 303 |
+
cols = st.columns(3)
|
| 304 |
+
with cols[0]:
|
| 305 |
+
st.image("upload-icon.png", width=100)
|
| 306 |
+
st.markdown("### Upload Video")
|
| 307 |
+
with cols[1]:
|
| 308 |
+
st.image("analyze-icon.png", width=100)
|
| 309 |
+
st.markdown("### AI Analysis")
|
| 310 |
+
with cols[2]:
|
| 311 |
+
st.image("result-icon.png", width=100)
|
| 312 |
+
st.markdown("### Get Results")
|
| 313 |
+
|
| 314 |
+
|
| 315 |
+
elif page == "Analyze Video":
|
| 316 |
+
uploaded_file = st.file_uploader("Upload a Video", type=["mp4", "mov"])
|
| 317 |
+
|
| 318 |
+
if uploaded_file is not None:
|
| 319 |
+
# Save uploaded file to a temporary location
|
| 320 |
+
with tempfile.NamedTemporaryFile(delete=False, suffix=".mp4") as temp_file:
|
| 321 |
+
temp_file.write(uploaded_file.read())
|
| 322 |
+
temp_video_path = temp_file.name # β
Correct variable name
|
| 323 |
+
|
| 324 |
+
st.video(temp_video_path)
|
| 325 |
+
|
| 326 |
+
if st.button("Analyze Video"):
|
| 327 |
+
with st.spinner("Analyzing..."):
|
| 328 |
+
try:
|
| 329 |
+
score = analyze_video(temp_video_path) # β
Ensure function exists
|
| 330 |
+
|
| 331 |
+
# Debugging Line
|
| 332 |
+
st.write(f"Analysis Score: {score}")
|
| 333 |
+
float(score)
|
| 334 |
+
# Display result based on score
|
| 335 |
+
if score >= 3.5 :
|
| 336 |
+
st.markdown(f"""
|
| 337 |
+
<div class='result-box suspicious'>
|
| 338 |
+
<p>This video shows major signs of manipulation</p>
|
| 339 |
+
</div>
|
| 340 |
+
""", unsafe_allow_html=True)
|
| 341 |
+
elif score >= 2.0:
|
| 342 |
+
st.markdown(f"""
|
| 343 |
+
<div class='result-box suspicious'>
|
| 344 |
+
<p>This video shows minor signs of manipulation</p>
|
| 345 |
+
</div>
|
| 346 |
+
""", unsafe_allow_html=True)
|
| 347 |
+
else:
|
| 348 |
+
st.markdown(f"""
|
| 349 |
+
<div class='result-box clean'>
|
| 350 |
+
<p>No significant manipulation detected</p>
|
| 351 |
+
</div>
|
| 352 |
+
""", unsafe_allow_html=True)
|
| 353 |
+
except Exception as e:
|
| 354 |
+
st.error(f"An error occurred during analysis: {e}")
|
| 355 |
+
|
| 356 |
+
elif page == "About": # β
Now this will work correctly
|
| 357 |
+
st.markdown("<h1 class='title'>About Us</h1>", unsafe_allow_html=True)
|
| 358 |
+
|
| 359 |
+
# Creator Profile
|
| 360 |
+
col1, col2 = st.columns(2)
|
| 361 |
+
with col1:
|
| 362 |
+
st.image("creator.jpg", width=300, caption="Ayush Agarwal, Lead Developer")
|
| 363 |
+
with col2:
|
| 364 |
+
st.markdown("""
|
| 365 |
+
<div class='about-text'>
|
| 366 |
+
## Ayush Agarwal ,
|
| 367 |
+
Student at VIT Bhopal University ,
|
| 368 |
+
AIML enthusiast
|
| 369 |
+
<br><br>
|
| 370 |
+
π§ [email protected]
|
| 371 |
+
<br>
|
| 372 |
+
π [LinkedIn](www.linkedin.com/in/ayush20039939)
|
| 373 |
+
<br>
|
| 374 |
+
π [GitHub](https://github.com)
|
| 375 |
+
</div>
|
| 376 |
+
""", unsafe_allow_html=True)
|
| 377 |
+
|
| 378 |
+
# Technology Stack
|
| 379 |
+
st.markdown("## Our Technology")
|
| 380 |
+
st.markdown("""
|
| 381 |
+
<div class='tech-stack'>
|
| 382 |
+
<img src='https://img.icons8.com/color/96/000000/python.png'/>
|
| 383 |
+
<img src='https://img.icons8.com/color/96/000000/tensorflow.png'/>
|
| 384 |
+
<img src='https://img.icons8.com/color/96/000000/opencv.png'/>
|
| 385 |
+
<img src='https://raw.githubusercontent.com/github/explore/968d1eb8fb6b704c6be917f0000283face4f33ee/topics/streamlit/streamlit.png'/>
|
| 386 |
+
</div>
|
| 387 |
""", unsafe_allow_html=True)
|