Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -38,6 +38,9 @@ from utils.mir_eval_modules import (
|
|
| 38 |
from utils.mert import FeatureExtractorMERT
|
| 39 |
from model.linear_mt_attn_ck import FeedforwardModelMTAttnCK
|
| 40 |
|
|
|
|
|
|
|
|
|
|
| 41 |
# Suppress unnecessary warnings and logs
|
| 42 |
warnings.filterwarnings("ignore")
|
| 43 |
logging.getLogger("transformers.modeling_utils").setLevel(logging.ERROR)
|
|
@@ -170,7 +173,20 @@ def split_audio(waveform, sample_rate):
|
|
| 170 |
return segments
|
| 171 |
|
| 172 |
|
| 173 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 174 |
|
| 175 |
|
| 176 |
class Music2emo:
|
|
@@ -248,20 +264,32 @@ class Music2emo:
|
|
| 248 |
feature_dir = Path("./inference/temp_out")
|
| 249 |
output_dir = Path("./inference/output")
|
| 250 |
|
| 251 |
-
if feature_dir.exists():
|
| 252 |
-
|
| 253 |
-
if output_dir.exists():
|
| 254 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 255 |
|
| 256 |
-
feature_dir
|
| 257 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 258 |
|
| 259 |
warnings.filterwarnings('ignore')
|
| 260 |
logger.logging_verbosity(1)
|
| 261 |
-
|
| 262 |
mert_dir = feature_dir / "mert"
|
| 263 |
-
mert_dir.mkdir(parents=True)
|
| 264 |
-
|
| 265 |
waveform, sample_rate = torchaudio.load(audio)
|
| 266 |
if waveform.shape[0] > 1:
|
| 267 |
waveform = waveform.mean(dim=0).unsqueeze(0)
|
|
@@ -381,9 +409,6 @@ class Music2emo:
|
|
| 381 |
midi.instruments.append(instrument)
|
| 382 |
midi.write(save_path.replace('.lab', '.midi'))
|
| 383 |
|
| 384 |
-
|
| 385 |
-
|
| 386 |
-
|
| 387 |
try:
|
| 388 |
midi_file = converter.parse(save_path.replace('.lab', '.midi'))
|
| 389 |
key_signature = str(midi_file.analyze('key'))
|
|
@@ -483,101 +508,158 @@ class Music2emo:
|
|
| 483 |
|
| 484 |
model_input_dic = {k: v.to(self.device) for k, v in model_input_dic.items()}
|
| 485 |
classification_output, regression_output = self.music2emo_model(model_input_dic)
|
| 486 |
-
probs = torch.sigmoid(classification_output)
|
| 487 |
|
| 488 |
tag_list = np.load ( "./inference/data/tag_list.npy")
|
| 489 |
tag_list = tag_list[127:]
|
| 490 |
mood_list = [t.replace("mood/theme---", "") for t in tag_list]
|
| 491 |
threshold = threshold
|
| 492 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 493 |
valence, arousal = regression_output.squeeze().tolist()
|
| 494 |
|
| 495 |
model_output_dic = {
|
| 496 |
"valence": valence,
|
| 497 |
"arousal": arousal,
|
| 498 |
-
"predicted_moods":
|
|
|
|
| 499 |
}
|
| 500 |
|
| 501 |
return model_output_dic
|
| 502 |
|
| 503 |
-
#
|
| 504 |
if torch.cuda.is_available():
|
| 505 |
music2emo = Music2emo()
|
| 506 |
else:
|
| 507 |
music2emo = Music2emo(device="cpu")
|
| 508 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 509 |
|
|
|
|
|
|
|
| 510 |
def format_prediction(model_output_dic):
|
| 511 |
-
"""Format the model output in a
|
| 512 |
valence = model_output_dic["valence"]
|
| 513 |
arousal = model_output_dic["arousal"]
|
| 514 |
-
|
| 515 |
-
|
| 516 |
-
# Create a formatted string with emojis and proper formatting
|
| 517 |
-
output_text = """
|
| 518 |
-
🎵 **Music Emotion Recognition Results** 🎵
|
| 519 |
-
--------------------------------------------------
|
| 520 |
-
🎭 **Predicted Mood Tags:** {}
|
| 521 |
-
💖 **Valence:** {:.2f} (Scale: 1-9)
|
| 522 |
-
⚡ **Arousal:** {:.2f} (Scale: 1-9)
|
| 523 |
-
--------------------------------------------------
|
| 524 |
-
""".format(
|
| 525 |
-
', '.join(moods) if moods else 'None',
|
| 526 |
-
valence,
|
| 527 |
-
arousal
|
| 528 |
-
)
|
| 529 |
|
| 530 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 531 |
|
|
|
|
|
|
|
|
|
|
| 532 |
title = "Music2Emo: Towards Unified Music Emotion Recognition across Dimensional and Categorical Models"
|
| 533 |
-
description_text = ""
|
| 534 |
-
<p>
|
| 535 |
-
Upload an audio file to analyze its emotional characteristics using Music2Emo.
|
| 536 |
-
The model will predict:
|
| 537 |
-
• Mood tags describing the emotional content
|
| 538 |
-
• Valence score (1-9 scale, representing emotional positivity)
|
| 539 |
-
• Arousal score (1-9 scale, representing emotional intensity)
|
| 540 |
-
</p>
|
| 541 |
-
"""
|
| 542 |
|
|
|
|
| 543 |
css = """
|
| 544 |
#output-text {
|
| 545 |
-
font-family:
|
| 546 |
white-space: pre-wrap;
|
| 547 |
-
font-size:
|
| 548 |
-
background-color: #
|
| 549 |
-
padding:
|
| 550 |
-
border-radius:
|
| 551 |
-
|
|
|
|
| 552 |
}
|
| 553 |
.gradio-container {
|
| 554 |
font-family: 'Inter', -apple-system, system-ui, sans-serif;
|
| 555 |
}
|
| 556 |
.gr-button {
|
| 557 |
color: white;
|
| 558 |
-
background: #
|
| 559 |
-
border-radius:
|
|
|
|
| 560 |
}
|
| 561 |
"""
|
| 562 |
-
|
| 563 |
-
|
| 564 |
-
|
| 565 |
-
|
| 566 |
-
# Initialize Music2Emo
|
| 567 |
-
if torch.cuda.is_available():
|
| 568 |
-
music2emo = Music2emo()
|
| 569 |
-
else:
|
| 570 |
-
music2emo = Music2emo(device="cpu")
|
| 571 |
-
|
| 572 |
with gr.Blocks(css=css) as demo:
|
| 573 |
-
gr.HTML(f"<h1
|
| 574 |
gr.Markdown(description_text)
|
| 575 |
|
| 576 |
with gr.Row():
|
|
|
|
| 577 |
with gr.Column(scale=1):
|
| 578 |
input_audio = gr.Audio(
|
| 579 |
label="Upload Audio File",
|
| 580 |
-
type="filepath"
|
| 581 |
)
|
| 582 |
threshold = gr.Slider(
|
| 583 |
minimum=0.0,
|
|
@@ -585,29 +667,40 @@ with gr.Blocks(css=css) as demo:
|
|
| 585 |
value=0.5,
|
| 586 |
step=0.01,
|
| 587 |
label="Mood Detection Threshold",
|
| 588 |
-
info="Adjust threshold for mood detection
|
| 589 |
)
|
| 590 |
predict_btn = gr.Button("🎭 Analyze Emotions", variant="primary")
|
| 591 |
|
|
|
|
| 592 |
with gr.Column(scale=1):
|
| 593 |
-
output_text = gr.Markdown(
|
| 594 |
-
|
| 595 |
-
|
| 596 |
-
)
|
| 597 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 598 |
|
|
|
|
| 599 |
predict_btn.click(
|
| 600 |
fn=lambda audio, thresh: format_prediction(music2emo.predict(audio, thresh)),
|
| 601 |
inputs=[input_audio, threshold],
|
| 602 |
-
outputs=output_text
|
| 603 |
)
|
| 604 |
|
|
|
|
| 605 |
gr.Markdown("""
|
| 606 |
### 📝 Notes:
|
| 607 |
-
- Supported audio formats
|
| 608 |
-
-
|
| 609 |
-
- Processing
|
| 610 |
""")
|
| 611 |
|
| 612 |
-
# Launch the
|
| 613 |
demo.queue().launch()
|
|
|
|
|
|
| 38 |
from utils.mert import FeatureExtractorMERT
|
| 39 |
from model.linear_mt_attn_ck import FeedforwardModelMTAttnCK
|
| 40 |
|
| 41 |
+
import matplotlib.pyplot as plt
|
| 42 |
+
|
| 43 |
+
|
| 44 |
# Suppress unnecessary warnings and logs
|
| 45 |
warnings.filterwarnings("ignore")
|
| 46 |
logging.getLogger("transformers.modeling_utils").setLevel(logging.ERROR)
|
|
|
|
| 173 |
return segments
|
| 174 |
|
| 175 |
|
| 176 |
+
def safe_remove_dir(directory):
|
| 177 |
+
"""
|
| 178 |
+
Safely removes a directory only if it exists and is empty.
|
| 179 |
+
"""
|
| 180 |
+
directory = Path(directory)
|
| 181 |
+
if directory.exists():
|
| 182 |
+
try:
|
| 183 |
+
shutil.rmtree(directory)
|
| 184 |
+
except FileNotFoundError:
|
| 185 |
+
print(f"Warning: Some files in {directory} were already deleted.")
|
| 186 |
+
except PermissionError:
|
| 187 |
+
print(f"Warning: Permission issue encountered while deleting {directory}.")
|
| 188 |
+
except Exception as e:
|
| 189 |
+
print(f"Unexpected error while deleting {directory}: {e}")
|
| 190 |
|
| 191 |
|
| 192 |
class Music2emo:
|
|
|
|
| 264 |
feature_dir = Path("./inference/temp_out")
|
| 265 |
output_dir = Path("./inference/output")
|
| 266 |
|
| 267 |
+
# if feature_dir.exists():
|
| 268 |
+
# shutil.rmtree(str(feature_dir))
|
| 269 |
+
# if output_dir.exists():
|
| 270 |
+
# shutil.rmtree(str(output_dir))
|
| 271 |
+
|
| 272 |
+
# feature_dir.mkdir(parents=True)
|
| 273 |
+
# output_dir.mkdir(parents=True)
|
| 274 |
+
|
| 275 |
+
# warnings.filterwarnings('ignore')
|
| 276 |
+
# logger.logging_verbosity(1)
|
| 277 |
|
| 278 |
+
# mert_dir = feature_dir / "mert"
|
| 279 |
+
# mert_dir.mkdir(parents=True)
|
| 280 |
+
|
| 281 |
+
safe_remove_dir(feature_dir)
|
| 282 |
+
safe_remove_dir(output_dir)
|
| 283 |
+
|
| 284 |
+
feature_dir.mkdir(parents=True, exist_ok=True)
|
| 285 |
+
output_dir.mkdir(parents=True, exist_ok=True)
|
| 286 |
|
| 287 |
warnings.filterwarnings('ignore')
|
| 288 |
logger.logging_verbosity(1)
|
| 289 |
+
|
| 290 |
mert_dir = feature_dir / "mert"
|
| 291 |
+
mert_dir.mkdir(parents=True, exist_ok=True)
|
| 292 |
+
|
| 293 |
waveform, sample_rate = torchaudio.load(audio)
|
| 294 |
if waveform.shape[0] > 1:
|
| 295 |
waveform = waveform.mean(dim=0).unsqueeze(0)
|
|
|
|
| 409 |
midi.instruments.append(instrument)
|
| 410 |
midi.write(save_path.replace('.lab', '.midi'))
|
| 411 |
|
|
|
|
|
|
|
|
|
|
| 412 |
try:
|
| 413 |
midi_file = converter.parse(save_path.replace('.lab', '.midi'))
|
| 414 |
key_signature = str(midi_file.analyze('key'))
|
|
|
|
| 508 |
|
| 509 |
model_input_dic = {k: v.to(self.device) for k, v in model_input_dic.items()}
|
| 510 |
classification_output, regression_output = self.music2emo_model(model_input_dic)
|
| 511 |
+
# probs = torch.sigmoid(classification_output)
|
| 512 |
|
| 513 |
tag_list = np.load ( "./inference/data/tag_list.npy")
|
| 514 |
tag_list = tag_list[127:]
|
| 515 |
mood_list = [t.replace("mood/theme---", "") for t in tag_list]
|
| 516 |
threshold = threshold
|
| 517 |
+
|
| 518 |
+
# Get probabilities
|
| 519 |
+
probs = torch.sigmoid(classification_output).squeeze().tolist()
|
| 520 |
+
|
| 521 |
+
# Include both mood names and scores
|
| 522 |
+
predicted_moods_with_scores = [
|
| 523 |
+
{"mood": mood_list[i], "score": round(p, 4)} # Rounded for better readability
|
| 524 |
+
for i, p in enumerate(probs) if p > threshold
|
| 525 |
+
]
|
| 526 |
+
|
| 527 |
+
# Include both mood names and scores
|
| 528 |
+
predicted_moods_with_scores_all = [
|
| 529 |
+
{"mood": mood_list[i], "score": round(p, 4)} # Rounded for better readability
|
| 530 |
+
for i, p in enumerate(probs)
|
| 531 |
+
]
|
| 532 |
+
|
| 533 |
+
|
| 534 |
+
# Sort by highest probability
|
| 535 |
+
predicted_moods_with_scores.sort(key=lambda x: x["score"], reverse=True)
|
| 536 |
+
|
| 537 |
valence, arousal = regression_output.squeeze().tolist()
|
| 538 |
|
| 539 |
model_output_dic = {
|
| 540 |
"valence": valence,
|
| 541 |
"arousal": arousal,
|
| 542 |
+
"predicted_moods": predicted_moods_with_scores,
|
| 543 |
+
"predicted_moods_all": predicted_moods_with_scores_all
|
| 544 |
}
|
| 545 |
|
| 546 |
return model_output_dic
|
| 547 |
|
| 548 |
+
# Music2Emo Model Initialization
|
| 549 |
if torch.cuda.is_available():
|
| 550 |
music2emo = Music2emo()
|
| 551 |
else:
|
| 552 |
music2emo = Music2emo(device="cpu")
|
| 553 |
|
| 554 |
+
# Plot Functions
|
| 555 |
+
def plot_mood_probabilities(predicted_moods_with_scores):
|
| 556 |
+
"""Plot mood probabilities as a horizontal bar chart."""
|
| 557 |
+
if not predicted_moods_with_scores:
|
| 558 |
+
return None
|
| 559 |
+
|
| 560 |
+
# Extract mood names and their scores
|
| 561 |
+
moods = [m["mood"] for m in predicted_moods_with_scores]
|
| 562 |
+
probs = [m["score"] for m in predicted_moods_with_scores]
|
| 563 |
+
|
| 564 |
+
# Sort moods by probability
|
| 565 |
+
sorted_indices = np.argsort(probs)[::-1]
|
| 566 |
+
sorted_probs = [probs[i] for i in sorted_indices]
|
| 567 |
+
sorted_moods = [moods[i] for i in sorted_indices]
|
| 568 |
+
|
| 569 |
+
# Create bar chart
|
| 570 |
+
fig, ax = plt.subplots(figsize=(8, 4))
|
| 571 |
+
ax.barh(sorted_moods[:10], sorted_probs[:10], color="#4CAF50")
|
| 572 |
+
ax.set_xlabel("Probability")
|
| 573 |
+
ax.set_title("Top 10 Predicted Mood Tags")
|
| 574 |
+
ax.invert_yaxis()
|
| 575 |
+
|
| 576 |
+
return fig
|
| 577 |
+
|
| 578 |
+
def plot_valence_arousal(valence, arousal):
|
| 579 |
+
"""Plot valence-arousal on a 2D circumplex model."""
|
| 580 |
+
fig, ax = plt.subplots(figsize=(4, 4))
|
| 581 |
+
ax.scatter(valence, arousal, color="red", s=100)
|
| 582 |
+
ax.set_xlim(1, 9)
|
| 583 |
+
ax.set_ylim(1, 9)
|
| 584 |
+
|
| 585 |
+
# Add midpoint lines
|
| 586 |
+
ax.axhline(y=5, color='gray', linestyle='--', linewidth=1) # Horizontal middle line
|
| 587 |
+
ax.axvline(x=5, color='gray', linestyle='--', linewidth=1) # Vertical middle line
|
| 588 |
+
|
| 589 |
+
# Labels & Grid
|
| 590 |
+
ax.set_xlabel("Valence (Positivity)")
|
| 591 |
+
ax.set_ylabel("Arousal (Intensity)")
|
| 592 |
+
ax.set_title("Valence-Arousal Plot")
|
| 593 |
+
ax.legend()
|
| 594 |
+
ax.grid(True, linestyle="--", alpha=0.6)
|
| 595 |
+
|
| 596 |
+
return fig
|
| 597 |
|
| 598 |
+
|
| 599 |
+
# Prediction Formatting
|
| 600 |
def format_prediction(model_output_dic):
|
| 601 |
+
"""Format the model output in a structured format"""
|
| 602 |
valence = model_output_dic["valence"]
|
| 603 |
arousal = model_output_dic["arousal"]
|
| 604 |
+
predicted_moods_with_scores = model_output_dic["predicted_moods"]
|
| 605 |
+
predicted_moods_with_scores_all = model_output_dic["predicted_moods_all"]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 606 |
|
| 607 |
+
# Generate charts
|
| 608 |
+
va_chart = plot_valence_arousal(valence, arousal)
|
| 609 |
+
mood_chart = plot_mood_probabilities(predicted_moods_with_scores_all)
|
| 610 |
+
|
| 611 |
+
# Format mood output with scores
|
| 612 |
+
if predicted_moods_with_scores:
|
| 613 |
+
moods_text = ", ".join(
|
| 614 |
+
[f"**{m['mood']}** ({m['score']:.2f})" for m in predicted_moods_with_scores]
|
| 615 |
+
)
|
| 616 |
+
else:
|
| 617 |
+
moods_text = "No significant moods detected."
|
| 618 |
+
|
| 619 |
+
# Create formatted output
|
| 620 |
+
output_text = f""" 🎭 Predicted Mood Tags : {moods_text}
|
| 621 |
+
|
| 622 |
+
💖 Valence: {valence:.2f} (Scale: 1-9)
|
| 623 |
+
⚡ Arousal: {arousal:.2f} (Scale: 1-9)"""
|
| 624 |
|
| 625 |
+
return output_text, va_chart, mood_chart
|
| 626 |
+
|
| 627 |
+
# Gradio UI Elements
|
| 628 |
title = "Music2Emo: Towards Unified Music Emotion Recognition across Dimensional and Categorical Models"
|
| 629 |
+
description_text = "Upload an audio file to analyze its emotional characteristics using Music2Emo. The model will predict: • Mood tags describing the emotional content • Valence score (1-9 scale, representing emotional positivity) • Arousal score (1-9 scale, representing emotional intensity) "
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 630 |
|
| 631 |
+
# Custom CSS Styling
|
| 632 |
css = """
|
| 633 |
#output-text {
|
| 634 |
+
font-family: 'Inter', sans-serif;
|
| 635 |
white-space: pre-wrap;
|
| 636 |
+
font-size: 14px;
|
| 637 |
+
background-color: #222222;
|
| 638 |
+
padding: 0spx;
|
| 639 |
+
border-radius: 8px;
|
| 640 |
+
border-left: 5px solid #4CAF50;
|
| 641 |
+
margin: 0px 0;
|
| 642 |
}
|
| 643 |
.gradio-container {
|
| 644 |
font-family: 'Inter', -apple-system, system-ui, sans-serif;
|
| 645 |
}
|
| 646 |
.gr-button {
|
| 647 |
color: white;
|
| 648 |
+
background: #4CAF50;
|
| 649 |
+
border-radius: 8px;
|
| 650 |
+
padding: 10px;
|
| 651 |
}
|
| 652 |
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 653 |
with gr.Blocks(css=css) as demo:
|
| 654 |
+
gr.HTML(f"<h1 style='text-align: center;'>{title}</h1>")
|
| 655 |
gr.Markdown(description_text)
|
| 656 |
|
| 657 |
with gr.Row():
|
| 658 |
+
# Left Panel (Input)
|
| 659 |
with gr.Column(scale=1):
|
| 660 |
input_audio = gr.Audio(
|
| 661 |
label="Upload Audio File",
|
| 662 |
+
type="filepath"
|
| 663 |
)
|
| 664 |
threshold = gr.Slider(
|
| 665 |
minimum=0.0,
|
|
|
|
| 667 |
value=0.5,
|
| 668 |
step=0.01,
|
| 669 |
label="Mood Detection Threshold",
|
| 670 |
+
info="Adjust threshold for mood detection"
|
| 671 |
)
|
| 672 |
predict_btn = gr.Button("🎭 Analyze Emotions", variant="primary")
|
| 673 |
|
| 674 |
+
# Right Panel (Output)
|
| 675 |
with gr.Column(scale=1):
|
| 676 |
+
output_text = gr.Markdown(label="Analysis Results", elem_id="output-text")
|
| 677 |
+
|
| 678 |
+
# ✅ Using `gr.Row(equal_height=True)` ensures both plots stay on the same level
|
| 679 |
+
with gr.Row(equal_height=True):
|
| 680 |
+
mood_chart = gr.Plot(label=" ", scale=2)
|
| 681 |
+
va_chart = gr.Plot(label=" ", scale=1)
|
| 682 |
+
|
| 683 |
+
predict_btn.click(
|
| 684 |
+
fn=lambda audio, thresh: format_prediction(music2emo.predict(audio, thresh)),
|
| 685 |
+
inputs=[input_audio, threshold],
|
| 686 |
+
outputs=[output_text, va_chart, mood_chart]
|
| 687 |
+
)
|
| 688 |
|
| 689 |
+
# Button Click Function
|
| 690 |
predict_btn.click(
|
| 691 |
fn=lambda audio, thresh: format_prediction(music2emo.predict(audio, thresh)),
|
| 692 |
inputs=[input_audio, threshold],
|
| 693 |
+
outputs=[output_text, va_chart, mood_chart]
|
| 694 |
)
|
| 695 |
|
| 696 |
+
# Notes Section
|
| 697 |
gr.Markdown("""
|
| 698 |
### 📝 Notes:
|
| 699 |
+
- **Supported audio formats:** MP3, WAV
|
| 700 |
+
- **Recommended:** High-quality audio files
|
| 701 |
+
- **Processing time:** A few seconds, depending on file size
|
| 702 |
""")
|
| 703 |
|
| 704 |
+
# Launch the App
|
| 705 |
demo.queue().launch()
|
| 706 |
+
|