var name typo
Browse files- semscore.py +1 -1
semscore.py
CHANGED
@@ -121,7 +121,7 @@ class SemScore(evaluate.Metric):
|
|
121 |
encoded_refs = self.tokenizer(batch_refs, padding=True, truncation=True, return_tensors='pt')
|
122 |
encoded_preds = self.tokenizer(batch_preds, padding=True, truncation=True, return_tensors='pt')
|
123 |
model_output_refs = self.model(**encoded_refs.to(device))
|
124 |
-
model_output_preds = self.model(**
|
125 |
batch_pooled_refs = mean_pooling(model_output_refs, encoded_refs['attention_mask'])
|
126 |
batch_pooled_preds = mean_pooling(model_output_preds, encoded_preds['attention_mask'])
|
127 |
pooled_refs.append(batch_pooled_refs)
|
|
|
121 |
encoded_refs = self.tokenizer(batch_refs, padding=True, truncation=True, return_tensors='pt')
|
122 |
encoded_preds = self.tokenizer(batch_preds, padding=True, truncation=True, return_tensors='pt')
|
123 |
model_output_refs = self.model(**encoded_refs.to(device))
|
124 |
+
model_output_preds = self.model(**encoded_preds.to(device))
|
125 |
batch_pooled_refs = mean_pooling(model_output_refs, encoded_refs['attention_mask'])
|
126 |
batch_pooled_preds = mean_pooling(model_output_preds, encoded_preds['attention_mask'])
|
127 |
pooled_refs.append(batch_pooled_refs)
|