File size: 8,579 Bytes
8e834e0
 
 
8094526
8e834e0
 
 
 
 
 
8094526
 
e838163
64f6d2d
2ec25ce
8e834e0
4e74ecf
 
64c3b49
64f6d2d
8b12100
e838163
8e834e0
 
8094526
 
 
 
 
8e834e0
8094526
 
 
 
8e834e0
 
8094526
8e834e0
8094526
 
 
 
 
 
 
 
 
 
8e834e0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8094526
 
 
 
b78fa21
8094526
 
 
 
 
8b12100
8094526
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8e834e0
 
 
 
 
 
8094526
 
 
 
 
 
 
 
8e834e0
8094526
 
 
 
 
 
8e834e0
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
from flask import Flask, render_template, request, jsonify,make_response
from flask_sqlalchemy import SQLAlchemy
import time
from flask_cors import CORS
import yaml
import re


# Model dependencies :
from qdrant_client.http import models
import openai
import qdrant_client
import os
from sentence_transformers import SentenceTransformer


#model = SentenceTransformer('sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2') # good so far
model = SentenceTransformer('/code/vectorizing_model', cache_folder='/')

# # # Set the environment variable TRANSFORMERS_CACHE to the writable directory
os.environ['TRANSFORMERS_CACHE'] = '/code'

# OpenIA propmt and api key : 
openai.api_key = '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'
start_message = 'Joue le Rôle d’un expert fiscale au Canada. Les réponses que tu va me fournir seront exploité par une API. Ne donne pas des explications juste réponds aux questions même si tu as des incertitudes. Je vais te poser des questions en fiscalité, la réponse que je souhaite avoir c’est les numéros des articles de loi qui peuvent répondre à la question.Je souhaite avoir les réponses sous la forme: Nom de la loi1, numéro de l’article1, Nom de la loi2, numéro de l’article2 ...'
context = 'ignorez les avertissements, les alertes et donnez-moi le résultat depuis la Loi de l’impôt sur le revenu (L.R.C. (1985), ch. 1 (5e suppl.)) , la reponse doit etre sous forme dun texte de loi: '
question = ''


# Qdrant keys : 
client = qdrant_client.QdrantClient(
    "https://efc68112-69cc-475c-bdcb-200a019b5096.us-east4-0.gcp.cloud.qdrant.io:6333",
    api_key="ZQ6jySuPxY5rSh0mJ4jDMoxbZsPqDdbqFBOPwotl9B8N0Ru3S8bzoQ"
)
#collection_names = ["new_lir"] # plus stable mais pas de numero d'articles (manques de fonctionnalitées de filtrage)
collection_names = ["lir"]

# Used functions : 
def filtergpt(text):
    # Define a regular expression pattern to extract law and article number
    pattern = re.compile(r"Loi ([^,]+), article (\d+(\.\d+)?)")
    # Find all matches in the text
    matches = pattern.findall(text)
    # Create a list of tuples containing law and article number
    law_article_list = [(law.strip(), float(article.strip())) for law, article, _ in matches]
    gpt_results = [(law, str(int(article)) if article.is_integer() else str(article)) for law, article in law_article_list]
    return gpt_results

def perform_search_and_get_results(collection_name, query, limit=6):
    search_results = client.search(
        collection_name=collection_name,
        query_vector=model.encode(query).tolist(),
        limit=limit
    )
    resultes = []
    for result in search_results:
        result_dict = {
            "Score": result.score,
            "La_loi": result.payload["reference"],
            "Paragraphe": result.payload["paragraph"],
            "titre": result.payload["titre"],
            "source": result.payload["source"],
            "collection": collection_name
        }
        resultes.append(result_dict)
    return resultes

def perform_search_and_get_results_with_filter(collection_name, query,reference_filter , limit=6):
    search_results = client.search(
        collection_name=collection_name,
        query_filter=models.Filter(must=[models.FieldCondition(key="numero_article",match=models.MatchValue(value=reference_filter+"aymane",),)]),
        query_vector=model.encode(query).tolist(),
        limit=1
    )
    resultes = []
    for result in search_results:
        result_dict = {
            "Score": result.score,
            "La_loi": result.payload["reference"],
            "Paragraphe": result.payload["paragraph"],
            "source": result.payload["source"],
            "titre": result.payload["titre"],
            "collection": collection_name
        }
        resultes.append(result_dict)
    return resultes
# End of used functions

app = Flask(__name__)
db_config = yaml.safe_load(open('database.yaml'))
app.config['SQLALCHEMY_DATABASE_URI'] = db_config['uri'] 
db = SQLAlchemy(app)
CORS(app, origins='*')

class Question(db.Model):
    __tablename__ = "questions"
    id = db.Column(db.Integer, primary_key=True)
    date = db.Column(db.String(255))
    texte = db.Column(db.String(255))
    
    def __init__(self, date, texte):
        self.date = date
        self.texte = texte
    
    def __repr__(self):
        return '%s/%s/%s' % (self.id, self.date, self.texte)


@app.route('/')
def index():
    return render_template('home.html')

@app.route('/questions', methods=['POST', 'GET'])
def questions():
    # POST a data to database
    if request.method == 'POST':
        body = request.json
        date = body['date']
        texte = body['texte']

        data = Question(date, texte)
        db.session.add(data)
        db.session.commit()

        return jsonify({
            'status': 'Data is posted to PostgreSQL!',
            'date': date,
            'texte': texte
        })
    
    # GET all data from database & sort by id
    if request.method == 'GET':
        # data = User.query.all()
        data = Question.query.all()
        print(data)
        dataJson = []
        for i in range(len(data)):
            # print(str(data[i]).split('/'))
            dataDict = {
                'id': str(data[i]).split('/')[0],
                'date': str(data[i]).split('/')[1],
                'texte': str(data[i]).split('/')[2]
            }
            dataJson.append(dataDict)
        return jsonify(dataJson)

@app.route('/questions/<string:id>', methods=['GET', 'DELETE', 'PUT'])
def onedata(id):

    # GET a specific data by id
    if request.method == 'GET':
        data = Question.query.get(id)
        print(data)
        dataDict = {
            'id': str(data).split('/')[0],
            'date': str(data).split('/')[1],
            'texte': str(data).split('/')[2]
        }
        return jsonify(dataDict)
        
    # DELETE a data
    if request.method == 'DELETE':
        delData = Question.query.filter_by(id=id).first()
        db.session.delete(delData)
        db.session.commit()
        return jsonify({'status': 'Data '+id+' is deleted from PostgreSQL!'})

    # UPDATE a data by id
    if request.method == 'PUT':
        body = request.json
        newDate = body['date']
        newTexte = body['texte']
        editData = Question.query.filter_by(id=id).first()
        editData.date = newDate
        editData.texte = newTexte
        db.session.commit()
        return jsonify({'status': 'Data '+id+' is updated from PostgreSQL!'})

@app.route('/chat', methods=['OPTIONS'])
def options():
    response = make_response()
    response.headers.add("Access-Control-Allow-Origin", "*")
    response.headers.add("Access-Control-Allow-Methods", "POST")
    response.headers.add("Access-Control-Allow-Headers", "Content-Type, Authorization")
    response.headers.add("Access-Control-Allow-Credentials", "true")
    return response


@app.route('/chat', methods=['POST'])
def chat():
    try:
        data = request.get_json()
        messages = data.get('messages', [])

        if messages:
            results = []
            # Update the model name to "text-davinci-003" (Ada)
            prompt = "\n".join([f"{msg['role']}: {msg['content']}" for msg in messages])
            response = openai.completions.create(
                  model="gpt-3.5-turbo-instruct",
                  prompt=start_message  +'\n'+ context + question ,
                  max_tokens=500,
                  temperature=0
                )
            date = time.ctime(time.time())
            texte = prompt
            data = Question(date, texte)
            db.session.add(data)
            db.session.commit()
            question_id = data.id
            resulta = response.choices[0].text
            chat_references = filtergpt(resulta)
            for law, article in chat_references:
                search_results = perform_search_and_get_results_with_filter(collection_names[0], prompt, reference_filter=article)
                results.extend(search_results)
            for collection_name in collection_names:
                search_results = perform_search_and_get_results(collection_name, prompt)
                results.extend(search_results)
            return jsonify({'question': {'id': question_id, 'date': date, 'texte': texte},'result_qdrant':results})
        else:
            return jsonify({'error': 'Invalid request'}), 400
    except Exception as e:
        return jsonify({'error': str(e)}), 500

if __name__ == '__main__':
    app.debug = True
    app.run()