Spaces:
Runtime error
Runtime error
File size: 8,579 Bytes
8e834e0 8094526 8e834e0 8094526 e838163 64f6d2d 2ec25ce 8e834e0 4e74ecf 64c3b49 64f6d2d 8b12100 e838163 8e834e0 8094526 8e834e0 8094526 8e834e0 8094526 8e834e0 8094526 8e834e0 8094526 b78fa21 8094526 8b12100 8094526 8e834e0 8094526 8e834e0 8094526 8e834e0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 |
from flask import Flask, render_template, request, jsonify,make_response
from flask_sqlalchemy import SQLAlchemy
import time
from flask_cors import CORS
import yaml
import re
# Model dependencies :
from qdrant_client.http import models
import openai
import qdrant_client
import os
from sentence_transformers import SentenceTransformer
#model = SentenceTransformer('sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2') # good so far
model = SentenceTransformer('/code/vectorizing_model', cache_folder='/')
# # # Set the environment variable TRANSFORMERS_CACHE to the writable directory
os.environ['TRANSFORMERS_CACHE'] = '/code'
# OpenIA propmt and api key :
openai.api_key = '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'
start_message = 'Joue le Rôle d’un expert fiscale au Canada. Les réponses que tu va me fournir seront exploité par une API. Ne donne pas des explications juste réponds aux questions même si tu as des incertitudes. Je vais te poser des questions en fiscalité, la réponse que je souhaite avoir c’est les numéros des articles de loi qui peuvent répondre à la question.Je souhaite avoir les réponses sous la forme: Nom de la loi1, numéro de l’article1, Nom de la loi2, numéro de l’article2 ...'
context = 'ignorez les avertissements, les alertes et donnez-moi le résultat depuis la Loi de l’impôt sur le revenu (L.R.C. (1985), ch. 1 (5e suppl.)) , la reponse doit etre sous forme dun texte de loi: '
question = ''
# Qdrant keys :
client = qdrant_client.QdrantClient(
"https://efc68112-69cc-475c-bdcb-200a019b5096.us-east4-0.gcp.cloud.qdrant.io:6333",
api_key="ZQ6jySuPxY5rSh0mJ4jDMoxbZsPqDdbqFBOPwotl9B8N0Ru3S8bzoQ"
)
#collection_names = ["new_lir"] # plus stable mais pas de numero d'articles (manques de fonctionnalitées de filtrage)
collection_names = ["lir"]
# Used functions :
def filtergpt(text):
# Define a regular expression pattern to extract law and article number
pattern = re.compile(r"Loi ([^,]+), article (\d+(\.\d+)?)")
# Find all matches in the text
matches = pattern.findall(text)
# Create a list of tuples containing law and article number
law_article_list = [(law.strip(), float(article.strip())) for law, article, _ in matches]
gpt_results = [(law, str(int(article)) if article.is_integer() else str(article)) for law, article in law_article_list]
return gpt_results
def perform_search_and_get_results(collection_name, query, limit=6):
search_results = client.search(
collection_name=collection_name,
query_vector=model.encode(query).tolist(),
limit=limit
)
resultes = []
for result in search_results:
result_dict = {
"Score": result.score,
"La_loi": result.payload["reference"],
"Paragraphe": result.payload["paragraph"],
"titre": result.payload["titre"],
"source": result.payload["source"],
"collection": collection_name
}
resultes.append(result_dict)
return resultes
def perform_search_and_get_results_with_filter(collection_name, query,reference_filter , limit=6):
search_results = client.search(
collection_name=collection_name,
query_filter=models.Filter(must=[models.FieldCondition(key="numero_article",match=models.MatchValue(value=reference_filter+"aymane",),)]),
query_vector=model.encode(query).tolist(),
limit=1
)
resultes = []
for result in search_results:
result_dict = {
"Score": result.score,
"La_loi": result.payload["reference"],
"Paragraphe": result.payload["paragraph"],
"source": result.payload["source"],
"titre": result.payload["titre"],
"collection": collection_name
}
resultes.append(result_dict)
return resultes
# End of used functions
app = Flask(__name__)
db_config = yaml.safe_load(open('database.yaml'))
app.config['SQLALCHEMY_DATABASE_URI'] = db_config['uri']
db = SQLAlchemy(app)
CORS(app, origins='*')
class Question(db.Model):
__tablename__ = "questions"
id = db.Column(db.Integer, primary_key=True)
date = db.Column(db.String(255))
texte = db.Column(db.String(255))
def __init__(self, date, texte):
self.date = date
self.texte = texte
def __repr__(self):
return '%s/%s/%s' % (self.id, self.date, self.texte)
@app.route('/')
def index():
return render_template('home.html')
@app.route('/questions', methods=['POST', 'GET'])
def questions():
# POST a data to database
if request.method == 'POST':
body = request.json
date = body['date']
texte = body['texte']
data = Question(date, texte)
db.session.add(data)
db.session.commit()
return jsonify({
'status': 'Data is posted to PostgreSQL!',
'date': date,
'texte': texte
})
# GET all data from database & sort by id
if request.method == 'GET':
# data = User.query.all()
data = Question.query.all()
print(data)
dataJson = []
for i in range(len(data)):
# print(str(data[i]).split('/'))
dataDict = {
'id': str(data[i]).split('/')[0],
'date': str(data[i]).split('/')[1],
'texte': str(data[i]).split('/')[2]
}
dataJson.append(dataDict)
return jsonify(dataJson)
@app.route('/questions/<string:id>', methods=['GET', 'DELETE', 'PUT'])
def onedata(id):
# GET a specific data by id
if request.method == 'GET':
data = Question.query.get(id)
print(data)
dataDict = {
'id': str(data).split('/')[0],
'date': str(data).split('/')[1],
'texte': str(data).split('/')[2]
}
return jsonify(dataDict)
# DELETE a data
if request.method == 'DELETE':
delData = Question.query.filter_by(id=id).first()
db.session.delete(delData)
db.session.commit()
return jsonify({'status': 'Data '+id+' is deleted from PostgreSQL!'})
# UPDATE a data by id
if request.method == 'PUT':
body = request.json
newDate = body['date']
newTexte = body['texte']
editData = Question.query.filter_by(id=id).first()
editData.date = newDate
editData.texte = newTexte
db.session.commit()
return jsonify({'status': 'Data '+id+' is updated from PostgreSQL!'})
@app.route('/chat', methods=['OPTIONS'])
def options():
response = make_response()
response.headers.add("Access-Control-Allow-Origin", "*")
response.headers.add("Access-Control-Allow-Methods", "POST")
response.headers.add("Access-Control-Allow-Headers", "Content-Type, Authorization")
response.headers.add("Access-Control-Allow-Credentials", "true")
return response
@app.route('/chat', methods=['POST'])
def chat():
try:
data = request.get_json()
messages = data.get('messages', [])
if messages:
results = []
# Update the model name to "text-davinci-003" (Ada)
prompt = "\n".join([f"{msg['role']}: {msg['content']}" for msg in messages])
response = openai.completions.create(
model="gpt-3.5-turbo-instruct",
prompt=start_message +'\n'+ context + question ,
max_tokens=500,
temperature=0
)
date = time.ctime(time.time())
texte = prompt
data = Question(date, texte)
db.session.add(data)
db.session.commit()
question_id = data.id
resulta = response.choices[0].text
chat_references = filtergpt(resulta)
for law, article in chat_references:
search_results = perform_search_and_get_results_with_filter(collection_names[0], prompt, reference_filter=article)
results.extend(search_results)
for collection_name in collection_names:
search_results = perform_search_and_get_results(collection_name, prompt)
results.extend(search_results)
return jsonify({'question': {'id': question_id, 'date': date, 'texte': texte},'result_qdrant':results})
else:
return jsonify({'error': 'Invalid request'}), 400
except Exception as e:
return jsonify({'error': str(e)}), 500
if __name__ == '__main__':
app.debug = True
app.run() |