File size: 3,893 Bytes
ce4fb10
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
---

pipeline_tag: sentence-similarity
language: multilingual
license: apache-2.0
tags:
- sentence-transformers
- feature-extraction
- sentence-similarity
- transformers
---


# sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2

This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 384 dimensional dense vector space and can be used for tasks like clustering or semantic search.



## Usage (Sentence-Transformers)

Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:

```

pip install -U sentence-transformers

```

Then you can use the model like this:

```python

from sentence_transformers import SentenceTransformer

sentences = ["This is an example sentence", "Each sentence is converted"]



model = SentenceTransformer('sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2')

embeddings = model.encode(sentences)

print(embeddings)

```



## Usage (HuggingFace Transformers)
Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings.

```python

from transformers import AutoTokenizer, AutoModel

import torch





#Mean Pooling - Take attention mask into account for correct averaging

def mean_pooling(model_output, attention_mask):

    token_embeddings = model_output[0] #First element of model_output contains all token embeddings

    input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()

    return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)





# Sentences we want sentence embeddings for

sentences = ['This is an example sentence', 'Each sentence is converted']



# Load model from HuggingFace Hub

tokenizer = AutoTokenizer.from_pretrained('sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2')

model = AutoModel.from_pretrained('sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2')



# Tokenize sentences

encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')



# Compute token embeddings

with torch.no_grad():

    model_output = model(**encoded_input)



# Perform pooling. In this case, max pooling.

sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])



print("Sentence embeddings:")

print(sentence_embeddings)

```



## Evaluation Results



For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2)



## Full Model Architecture
```

SentenceTransformer(

  (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel 

  (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})

)

```

## Citing & Authors

This model was trained by [sentence-transformers](https://www.sbert.net/). 
        

If you find this model helpful, feel free to cite our publication [Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks](https://arxiv.org/abs/1908.10084):

```bibtex 

@inproceedings{reimers-2019-sentence-bert,

    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",

    author = "Reimers, Nils and Gurevych, Iryna",

    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",

    month = "11",

    year = "2019",

    publisher = "Association for Computational Linguistics",

    url = "http://arxiv.org/abs/1908.10084",

}

```