File size: 7,319 Bytes
7df98bf
969899b
b9713ec
 
 
 
 
 
 
 
 
 
 
 
521a5df
b9713ec
 
 
7df98bf
b9713ec
 
 
 
 
 
 
 
 
7df98bf
 
b9713ec
 
 
7df98bf
 
b9713ec
 
 
 
 
 
 
7df98bf
 
 
 
b9713ec
7df98bf
 
 
b9713ec
 
 
7df98bf
 
 
 
 
 
 
b9713ec
 
7df98bf
 
 
b9713ec
 
 
 
7df98bf
 
 
 
b9713ec
 
7df98bf
b9713ec
7df98bf
 
b9713ec
 
 
 
7df98bf
 
 
 
 
 
 
b9713ec
 
 
7df98bf
 
 
 
 
 
 
b9713ec
7df98bf
 
 
b9713ec
 
 
7df98bf
 
 
 
 
 
 
b9713ec
 
7df98bf
b9713ec
 
 
7df98bf
 
b9713ec
 
 
7df98bf
b9713ec
 
 
7df98bf
b9713ec
7df98bf
 
b9713ec
7df98bf
 
b9713ec
 
7df98bf
b9713ec
7df98bf
 
b9713ec
 
7df98bf
b9713ec
 
7df98bf
 
b9713ec
 
7df98bf
b9713ec
 
 
 
7df98bf
b9713ec
 
 
7df98bf
 
 
 
 
b9713ec
 
 
 
 
7df98bf
 
 
 
 
 
b9713ec
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
# app.py

import numpy as np
import gradio as gr
from sklearn.cluster import KMeans
from transformers import (
    BlipProcessor,
    BlipForConditionalGeneration,
    MBartForConditionalGeneration,
    MBart50TokenizerFast,
)
from PIL import Image, ImageDraw
import requests
from io import BytesIO

# Download example images
def download_example_images():
    image_urls = [
        # URL format: ("Image Description", "Image URL")
        ("Sunset over Mountains", "https://images.unsplash.com/photo-1501785888041-af3ef285b470"),
        ("Forest Path", "https://images.unsplash.com/photo-1502082553048-f009c37129b9"),
        ("City Skyline", "https://images.unsplash.com/photo-1498598453737-8913e843c47b"),
        ("Beach and Ocean", "https://images.unsplash.com/photo-1507525428034-b723cf961d3e"),
        ("Desert Dunes", "https://images.unsplash.com/photo-1501594907352-04cda38ebc29"),
    ]
    
    example_images = []
    for idx, (description, url) in enumerate(image_urls, start=1):
        response = requests.get(url)
        if response.status_code == 200:
            img = Image.open(BytesIO(response.content))
            img.save(f'example{idx}.jpg')
            example_images.append([f'example{idx}.jpg'])
        else:
            print(f"Failed to download image from {url}")
    return example_images

# Download example images and prepare examples list
examples = download_example_images()

# Load and Process the Entire Image
def load_image(image):
    # Convert PIL image to numpy array (RGB)
    image_np = np.array(image.convert('RGB'))
    
    # Resize the image for better processing
    resized_image = image.resize((300, 300), resample=Image.LANCZOS)
    resized_image_np = np.array(resized_image)
    
    return resized_image_np

# Extract Dominant Colors from the Image
def extract_colors(image, k=8):
    # Flatten the image
    pixels = image.reshape(-1, 3)
    # Normalize pixel values to [0, 1]
    pixels = pixels / 255.0
    # Ensure data type is float64
    pixels = pixels.astype(np.float64)
    # Apply K-means clustering to find dominant colors
    kmeans = KMeans(n_clusters=k, random_state=0, n_init=10, max_iter=300)
    kmeans.fit(pixels)
    # Convert normalized colors back to 0-255 scale
    colors = (kmeans.cluster_centers_ * 255).astype(int)
    return colors

# Create an Image for the Color Palette
def create_palette_image(colors):
    num_colors = len(colors)
    palette_height = 100
    palette_width = 100 * num_colors
    palette_image = Image.new("RGB", (palette_width, palette_height))
    
    draw = ImageDraw.Draw(palette_image)
    for i, color in enumerate(colors):
        # Ensure color values are within the valid range and integers
        color = tuple(np.clip(color, 0, 255).astype(int))
        draw.rectangle([i * 100, 0, (i + 1) * 100, palette_height], fill=color)
    
    return palette_image

# Display Color Palette as Hex Codes
def display_palette(colors):
    hex_colors = []
    for color in colors:
        # Ensure color values are within valid range and integers
        color = np.clip(color, 0, 255).astype(int)
        hex_color = "#{:02x}{:02x}{:02x}".format(color[0], color[1], color[2])
        hex_colors.append(hex_color)
    return hex_colors

# Generate Image Caption Using Hugging Face BLIP
def generate_caption(image):
    # Load models only once
    if 'processor' not in generate_caption.__dict__:
        generate_caption.processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-base")
        generate_caption.model = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-base")
    processor = generate_caption.processor
    model = generate_caption.model
    
    inputs = processor(images=image, return_tensors="pt")
    output = model.generate(**inputs)
    caption = processor.decode(output[0], skip_special_tokens=True)
    return caption

# Translate Caption to Arabic Using mBART
def translate_to_arabic(text):
    # Load models only once
    if 'tokenizer' not in translate_to_arabic.__dict__:
        translate_to_arabic.tokenizer = MBart50TokenizerFast.from_pretrained("facebook/mbart-large-50-many-to-many-mmt")
        translate_to_arabic.model = MBartForConditionalGeneration.from_pretrained("facebook/mbart-large-50-many-to-many-mmt")
    tokenizer = translate_to_arabic.tokenizer
    model = translate_to_arabic.model
    
    tokenizer.src_lang = "en_XX"
    encoded = tokenizer(text, return_tensors="pt")
    generated_tokens = model.generate(
        **encoded, 
        forced_bos_token_id=tokenizer.lang_code_to_id["ar_AR"]
    )
    translated_text = tokenizer.batch_decode(generated_tokens, skip_special_tokens=True)[0]
    return translated_text

# Gradio Interface Function (Combining Elements)
def process_image(image):
    # Ensure input is a PIL Image
    if isinstance(image, np.ndarray):
        image = Image.fromarray(image)
    
    # Convert to RGB format for PIL processing
    image_rgb = image.convert("RGB")
    
    # Load and resize the entire image
    resized_image_np = load_image(image_rgb)
    
    # Convert resized image to PIL Image for Gradio output
    resized_image_pil = Image.fromarray(resized_image_np)
    
    # Generate caption using BLIP model
    caption = generate_caption(image_rgb)
    
    # Translate caption to Arabic
    caption_arabic = translate_to_arabic(caption)
    
    # Extract dominant colors from the entire image
    colors = extract_colors(resized_image_np, k=8)
    color_palette = display_palette(colors)
    
    # Create palette image
    palette_image = create_palette_image(colors)
    
    # Combine English and Arabic captions
    bilingual_caption = f"English: {caption}\nArabic: {caption_arabic}"
    
    return bilingual_caption, ", ".join(color_palette), palette_image, resized_image_pil

# Create Gradio Interface using Blocks and add a submit button
with gr.Blocks(css=".gradio-container { height: 1000px !important; }") as demo:
    gr.Markdown("<h1 style='text-align: center;'>Palette Generator from Image with Image Captioning</h1>")
    gr.Markdown(
        """
        <p style='text-align: center;'>
        Upload an image or select one of the example images below to generate a color palette and a description of the image in both English and Arabic.
        </p>
        """
    )
    with gr.Row():
        with gr.Column(scale=1):
            image_input = gr.Image(type="pil", label="Upload your image or select an example below")
            submit_button = gr.Button("Submit")
            gr.Examples(
                examples=examples,
                inputs=image_input,
                label="Example Images",
                examples_per_page=5,
            )
        with gr.Column(scale=1):
            caption_output = gr.Textbox(label="Bilingual Caption", lines=5, max_lines=10)
            palette_hex_output = gr.Textbox(label="Color Palette Hex Codes", lines=2)
            palette_image_output = gr.Image(type="pil", label="Color Palette")
            resized_image_output = gr.Image(type="pil", label="Resized Image")
    
    submit_button.click(
        fn=process_image,
        inputs=image_input,
        outputs=[caption_output, palette_hex_output, palette_image_output, resized_image_output],
    )

# Launch Gradio Interface
demo.launch()