File size: 7,319 Bytes
7df98bf 969899b b9713ec 521a5df b9713ec 7df98bf b9713ec 7df98bf b9713ec 7df98bf b9713ec 7df98bf b9713ec 7df98bf b9713ec 7df98bf b9713ec 7df98bf b9713ec 7df98bf b9713ec 7df98bf b9713ec 7df98bf b9713ec 7df98bf b9713ec 7df98bf b9713ec 7df98bf b9713ec 7df98bf b9713ec 7df98bf b9713ec 7df98bf b9713ec 7df98bf b9713ec 7df98bf b9713ec 7df98bf b9713ec 7df98bf b9713ec 7df98bf b9713ec 7df98bf b9713ec 7df98bf b9713ec 7df98bf b9713ec 7df98bf b9713ec 7df98bf b9713ec 7df98bf b9713ec 7df98bf b9713ec |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 |
# app.py
import numpy as np
import gradio as gr
from sklearn.cluster import KMeans
from transformers import (
BlipProcessor,
BlipForConditionalGeneration,
MBartForConditionalGeneration,
MBart50TokenizerFast,
)
from PIL import Image, ImageDraw
import requests
from io import BytesIO
# Download example images
def download_example_images():
image_urls = [
# URL format: ("Image Description", "Image URL")
("Sunset over Mountains", "https://images.unsplash.com/photo-1501785888041-af3ef285b470"),
("Forest Path", "https://images.unsplash.com/photo-1502082553048-f009c37129b9"),
("City Skyline", "https://images.unsplash.com/photo-1498598453737-8913e843c47b"),
("Beach and Ocean", "https://images.unsplash.com/photo-1507525428034-b723cf961d3e"),
("Desert Dunes", "https://images.unsplash.com/photo-1501594907352-04cda38ebc29"),
]
example_images = []
for idx, (description, url) in enumerate(image_urls, start=1):
response = requests.get(url)
if response.status_code == 200:
img = Image.open(BytesIO(response.content))
img.save(f'example{idx}.jpg')
example_images.append([f'example{idx}.jpg'])
else:
print(f"Failed to download image from {url}")
return example_images
# Download example images and prepare examples list
examples = download_example_images()
# Load and Process the Entire Image
def load_image(image):
# Convert PIL image to numpy array (RGB)
image_np = np.array(image.convert('RGB'))
# Resize the image for better processing
resized_image = image.resize((300, 300), resample=Image.LANCZOS)
resized_image_np = np.array(resized_image)
return resized_image_np
# Extract Dominant Colors from the Image
def extract_colors(image, k=8):
# Flatten the image
pixels = image.reshape(-1, 3)
# Normalize pixel values to [0, 1]
pixels = pixels / 255.0
# Ensure data type is float64
pixels = pixels.astype(np.float64)
# Apply K-means clustering to find dominant colors
kmeans = KMeans(n_clusters=k, random_state=0, n_init=10, max_iter=300)
kmeans.fit(pixels)
# Convert normalized colors back to 0-255 scale
colors = (kmeans.cluster_centers_ * 255).astype(int)
return colors
# Create an Image for the Color Palette
def create_palette_image(colors):
num_colors = len(colors)
palette_height = 100
palette_width = 100 * num_colors
palette_image = Image.new("RGB", (palette_width, palette_height))
draw = ImageDraw.Draw(palette_image)
for i, color in enumerate(colors):
# Ensure color values are within the valid range and integers
color = tuple(np.clip(color, 0, 255).astype(int))
draw.rectangle([i * 100, 0, (i + 1) * 100, palette_height], fill=color)
return palette_image
# Display Color Palette as Hex Codes
def display_palette(colors):
hex_colors = []
for color in colors:
# Ensure color values are within valid range and integers
color = np.clip(color, 0, 255).astype(int)
hex_color = "#{:02x}{:02x}{:02x}".format(color[0], color[1], color[2])
hex_colors.append(hex_color)
return hex_colors
# Generate Image Caption Using Hugging Face BLIP
def generate_caption(image):
# Load models only once
if 'processor' not in generate_caption.__dict__:
generate_caption.processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-base")
generate_caption.model = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-base")
processor = generate_caption.processor
model = generate_caption.model
inputs = processor(images=image, return_tensors="pt")
output = model.generate(**inputs)
caption = processor.decode(output[0], skip_special_tokens=True)
return caption
# Translate Caption to Arabic Using mBART
def translate_to_arabic(text):
# Load models only once
if 'tokenizer' not in translate_to_arabic.__dict__:
translate_to_arabic.tokenizer = MBart50TokenizerFast.from_pretrained("facebook/mbart-large-50-many-to-many-mmt")
translate_to_arabic.model = MBartForConditionalGeneration.from_pretrained("facebook/mbart-large-50-many-to-many-mmt")
tokenizer = translate_to_arabic.tokenizer
model = translate_to_arabic.model
tokenizer.src_lang = "en_XX"
encoded = tokenizer(text, return_tensors="pt")
generated_tokens = model.generate(
**encoded,
forced_bos_token_id=tokenizer.lang_code_to_id["ar_AR"]
)
translated_text = tokenizer.batch_decode(generated_tokens, skip_special_tokens=True)[0]
return translated_text
# Gradio Interface Function (Combining Elements)
def process_image(image):
# Ensure input is a PIL Image
if isinstance(image, np.ndarray):
image = Image.fromarray(image)
# Convert to RGB format for PIL processing
image_rgb = image.convert("RGB")
# Load and resize the entire image
resized_image_np = load_image(image_rgb)
# Convert resized image to PIL Image for Gradio output
resized_image_pil = Image.fromarray(resized_image_np)
# Generate caption using BLIP model
caption = generate_caption(image_rgb)
# Translate caption to Arabic
caption_arabic = translate_to_arabic(caption)
# Extract dominant colors from the entire image
colors = extract_colors(resized_image_np, k=8)
color_palette = display_palette(colors)
# Create palette image
palette_image = create_palette_image(colors)
# Combine English and Arabic captions
bilingual_caption = f"English: {caption}\nArabic: {caption_arabic}"
return bilingual_caption, ", ".join(color_palette), palette_image, resized_image_pil
# Create Gradio Interface using Blocks and add a submit button
with gr.Blocks(css=".gradio-container { height: 1000px !important; }") as demo:
gr.Markdown("<h1 style='text-align: center;'>Palette Generator from Image with Image Captioning</h1>")
gr.Markdown(
"""
<p style='text-align: center;'>
Upload an image or select one of the example images below to generate a color palette and a description of the image in both English and Arabic.
</p>
"""
)
with gr.Row():
with gr.Column(scale=1):
image_input = gr.Image(type="pil", label="Upload your image or select an example below")
submit_button = gr.Button("Submit")
gr.Examples(
examples=examples,
inputs=image_input,
label="Example Images",
examples_per_page=5,
)
with gr.Column(scale=1):
caption_output = gr.Textbox(label="Bilingual Caption", lines=5, max_lines=10)
palette_hex_output = gr.Textbox(label="Color Palette Hex Codes", lines=2)
palette_image_output = gr.Image(type="pil", label="Color Palette")
resized_image_output = gr.Image(type="pil", label="Resized Image")
submit_button.click(
fn=process_image,
inputs=image_input,
outputs=[caption_output, palette_hex_output, palette_image_output, resized_image_output],
)
# Launch Gradio Interface
demo.launch()
|